Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 113))

Abstract

Grid adaptation is a very powerful tool for optimizing CFD calculations. However typical isotropic adaptation used for 3D flows still may result in excessive number of elements. This is especially the case when lower+dimensional features of the flow are dominant (boundary layers, shockwaves). The present paper investigates anisotropic adaptation for flows with complex boundaries. Of particular interest is the automatic adaptation for laminar / turbulent boundary layer for which case new error indicator is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2nd AIAA CFD Drag Prediction Workshop, http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop2/

  2. A Selection of Experimental Test Cases for the Validation of CFD Codes. Technical Report AR-303, AGARD (1994)

    Google Scholar 

  3. Alauzet, F.: Adaptation de maillage anisotrpe en trois dimensions. Application aux simulations instationnairesen Mécanique des Fluides. PhD thesis, de l’Université des Sciences et Techiques du Languedoc (2003)

    Google Scholar 

  4. Athanasiadis, A.: Three-Dimensional Hybrid Grid Generation with Application to High Reynolds Number Viscous Flows. PhD thesis, Université Libre de Bruxelles, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse, Belgium (2004)

    Google Scholar 

  5. Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elem. Anal. Des. 25(1-2), 61–83 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borouchaki, H., George, P.L., Mohammadi, B.: Delaunay mesh generation governed by metric specifications. Part II. Applications. Finite Elem. Anal. Des. 25(1-2), 85–109 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castro-Díaz, M.J., Hecht, F., Mohammadi, B.: New progress in anisotropic grid adaptation for inviscid and viscous flows simulations. Technical Report RR-2671, INRIA (1995)

    Google Scholar 

  8. Cook, P.H., McDonald, M.A., Firmin, M.C.P.: Aerofoil RAE 2822 - Pressure Distributions, and Boundary Layer and Wake Measurements, Experimental Data Base for Computer Program Assessment. Technical Report AR-138, AGARD (1979)

    Google Scholar 

  9. Dolejší, V.: Anisotropic mesh adaptation technique for viscous flow simulation. East-West J. Numer. Math. 9, 1–24 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Dolejší, V., Majewski, J., Quintino, T.: Computational performance of diferent data structure models for grid adaptation. Technical Report ADIGMA/WP5/UNPR/D5.1.4 (2009)

    Google Scholar 

  11. Formaggia, L., Perotto, S.: Anisotropic error estimation for finite element methods. In: 31st Computational Fluid Dynamics VKI Lecture Series, von Karman Institute for Fluid Dynamics (2000)

    Google Scholar 

  12. Frey, P.J., George, P.L.: Mesh Generation - Application to Finite Elements, 2nd edn. ISTE/Wiley (2008)

    Google Scholar 

  13. George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing - Application to Finite Element. Hermes (1998)

    Google Scholar 

  14. Majewski, J.: Anisotropic adaptation for flow simulations in complex geometries. In: 36th Lecture Series on Computational Fluid Dynamics/ADIGMA course on hp-adaptive and hp-multigrid methods. von Karman Institute for Fluid Dynamics (2009)

    Google Scholar 

  15. Mesri, Y., Alauzet, F., Loseille, A., Hascoet, L., Koobus, B., Dervieux, A.: Continous mesh adaptation models for cfd. CFD Journal 12(3) (2008)

    Google Scholar 

  16. Sermeus, K., Deconinck, H.: Solution of steady euler and navier-stokes equations using residual distribution schemes. In: 33rd Lecture Series on Computational Fluid Dynamics - Novel Methods for Solving Convection Dominated Systems (LS2003-05). von Karman Institute for Fluid Dynamics (2003)

    Google Scholar 

  17. Weatherill, N.P., Hassan, O., Marcum, D.L., Marchant, M.J.: Grid generation by the delaunay triangulation. In: Lecture Series on Grid Generation (LS1994-02), vol. 2, von Karman Institute for Fluid Dynamics (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Majewski, J., Rokicki, J. (2010). Anisotropic Mesh Adaptation in the Presence of Complex Boundaries. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sørensen, K. (eds) ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03707-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03707-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03706-1

  • Online ISBN: 978-3-642-03707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics