Skip to main content

Higher-Order Stabilized Finite Elements in an Industrial Navier-Stokes Code

  • Conference paper

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 113))

Abstract

This chapter covers Dassault Aviation’s contribution to Workpackage 3 of the ADIGMA Project, which focuses on the extension of its stabilized finite element industrial Navier-Stokes code to higher-order elements. Mesh generation aspects are treated and especially the issue of highly-stretched curved elements close to the wall boundary of Navier-Stokes meshes. The high-order approach is carefully assessed using inviscid subsonic and transonic, laminar, and high Reynolds number turbulent flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, A.N., Hughes, T.T.R.: Streamline Upwind Petrov Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chalot, F., Hughes, T.J.R., Johan, Z., Shakib, F.: Application of the Galerkin/least-squares formulation to the analysis of hypersonic flows. I: Flow over a two-dimensional ramp. In: Proceedings of a Workshop, Hypersonic Flows for Reentry Problems, Antibes, France, January 22-25. Test Cases – Experiments and Computations, vol. II, pp. 181–200. Springer, Heidelberg (1991)

    Google Scholar 

  3. Chalot, F., Hughes, T.J.R., Shakib, F.: Symmetrization of conservation laws with entropy for high-temperature hypersonic computations. Computing Systems in Engineering 1, 465–521 (1990)

    Article  Google Scholar 

  4. Chalot, F., Hughes, T.J.R.: A consistent equilibrium chemistry algorithm for hypersonic flows. Computer Methods in Applied Mechanics and Engineering 112, 25–40 (1994)

    Article  MATH  Google Scholar 

  5. Chalot, F., Mallet, M., Ravachol, M.: A comprehensive finite element Navier-Stokes solver for low- and high-speed aircraft design. Paper #94-0814. AIAA 32nd Aerospace Sciences Meeting, Reno, NV, January 10-13 (1994)

    Google Scholar 

  6. Chalot, F., Dinh, Q.V., Mallet, M., Naïm, A., Ravachol, M.: A multi-platform shared- or distributed-memory Navier-Stokes code. In: Parallel CFD 1997, Manchester, UK, May 19-21 (1997)

    Google Scholar 

  7. Chalot, F., Marquez, B., Ravachol, M., Ducros, F., Nicoud, F., Poinsot, T.: A consistent Finite Element approach to Large Eddy Simulation. Paper #98-2652. AIAA 29th Fluid Dynamics Conference, Albuquerque, NM, June 15-18 (1998)

    Google Scholar 

  8. Chalot, F., Marquez, B., Ravachol, M., Ducros, F., Poinsot, T.: Large Eddy Simulation of a compressible mixing layer: study of the mixing enhancement. Paper #99-3358. In: AIAA 14th Computational Fluid Dynamics Conference, Norfolk, VA, June 28-July 1 (1999)

    Google Scholar 

  9. Chalot, F.: Industrial aerodynamics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Computational Fluid Dynamics, vol. 3, ch. 12. Wiley, Chichester (2004)

    Google Scholar 

  10. Chalot, F., Levasseur, V., Mallet, M., Petit, G., Réau, N.: LES and DES simulations for aircraft design. Paper #2007-0723. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 8-11 (2007)

    Google Scholar 

  11. Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV A discontinuity-capturing operator for multidimensional advective - diffusive systems. Comp. Meth. in Applied Mech. and Eng. 58, 329–336 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shakib, F., Hughes, T.J.R., Johan, Z.: A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis. Computer Methods in Applied Mechanics and Engineering 75, 415–456 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shakib, F., Hughes, T.J.R., Johan, Z.: A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 89, 141–219 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chalot, F., Normand, PE. (2010). Higher-Order Stabilized Finite Elements in an Industrial Navier-Stokes Code. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sørensen, K. (eds) ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03707-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03707-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03706-1

  • Online ISBN: 978-3-642-03707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics