Skip to main content

Nucleophilic Substitution Reactions at the Saturated C Atom

  • Chapter
Organic Mechanisms
  • 6478 Accesses

Abstract

The book began with chemistry that is by no means uncommon, but the bulk of organic chemistry has and continues to be based on two electron processes. Substitution reactions comprise one class of reactions involving such chemistry. Addition reactions comprise the other. You should have been introduced to both by now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • G. L. Edwards, “One or More CC Bond(s) Formed by Substitution: Substitution of Halogen,” in Comprehensive Organic Functional Group Transformations (A. R. Katritzky, O. Meth-Cohn, C. W. Rees, Eds.), Vol. 1, 105, Elsevier Science, Oxford, U. K., 1995.

    Google Scholar 

2.1

  • H. Mayr, M. Patz, “Scales of Nucleophilicity and Electrophilicity: A System for Ordering Polar Organic and Organometallic Reactions,” Angew. Chem. Int. Ed. Engl. 1994, 33, 938–958.

    Article  Google Scholar 

2.2

  • N. J. Fina, J. O. Edwards, “The Alpha Effect. A Review,” Int. J. Chem. Kinet. 1973, 5, 1–26.

    Article  CAS  Google Scholar 

  • A. P. Grekov, V. Y. Veselov, “The β-Effect in the Chemistry of Organic Compounds,” Russ. Chem. Rev. 1978, 47, 631–648

    Article  Google Scholar 

  • E. Buncel, S. Hoz, “The β-Effect: A Critical Evaluation of the Phenomenon and Its Origin,” Isr. J. Chem. 1985, 26, 313–319.

    Google Scholar 

2.3

  • M. Klessinger, “Polarity of Covalent Bonds,” Angew. Chem. Int. Ed. Engl. 1970, 9, 500–512.

    Article  CAS  Google Scholar 

2.4

  • P. Beak, “Determinations of Transition-State Geometries by the Endocyclic Restriction Test: Mechanism of Substitution at Nonstereogenic Atoms,” Acc. Chem. Res. 1992, 25, 215–222

    Article  CAS  Google Scholar 

  • P. Beak, “Mechanisms of Reactions at Nonstereogenic Heteroatoms: Evaluation of Reaction Geometries by the Endocyclic Restriction Test,” Pure Appl. Chem. 1993, 65, 611–615.

    Article  CAS  Google Scholar 

2.5

  • T. Baer, C.-Y. Ng, I. Powis (Eds.), “The Structure, Energetics and Dynamics of Organic Ions,” Wiley, Chichester, U. K., 1996.

    Google Scholar 

  • P. Buzek, P. v. Ragué Schleyer, St. Sieber, “Strukturen von Carbokationen,” Chem. unserer Zeit, 1992, 26, 116–128.

    Article  CAS  Google Scholar 

  • G. A. Olah, “Carbocations and Electrophilic Reactions,” Angew. Chem. Int. Ed. Engl. 1973, 12, 173–212.

    Article  Google Scholar 

  • H. Schwarz, “Pyramidal Carbocations,” Angew. Chem. Int. Ed. Engl. 1981, 20, 991–1003.

    Article  Google Scholar 

  • G. A. Olah, “My Search for Carbocations and Their Role in Chemistry (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 1995, 34, 1393–1405.

    Article  CAS  Google Scholar 

  • P. von R. Schleyer, R. E. Leone, “Degenerate Carbonium Ions,” Angew. Chem. Int. Ed. Engl. 1970, 9, 860–890.

    Article  Google Scholar 

  • C. A. Grob, “The Norbornyl Cation: Prototype of a 1,3-Bridged Carbocation,” Angew. Chem. Int. Ed. Engl. 1982, 21, 87–96.

    Article  Google Scholar 

  • M. Saunders, H. A. Jiménez-Vázquez, “Recent Studies of Carbocations,” Chem. Rev. 1991, 91, 375–397.

    Article  CAS  Google Scholar 

  • V. D. Nefedov, E. N. Sinotova, V. P. Lebedev, “Vinyl Cations,” Russ. Chem. Rev. 1992, 61, 283–296.

    Article  Google Scholar 

  • T. T. Tidwell, “Destabilized Carbocations,” Angew. Chem. Int. Ed. Engl. 1984, 23, 20.

    Article  Google Scholar 

  • J.-L. M. Abboud, I. Alkorta, J. Z. Davalos, P. Muller, E. Quintanilla, “Thermodynamic Stabilities of Carbocations,” Adv. Phys. Org. Chem. 2002, 37, 57–135.

    Article  CAS  Google Scholar 

  • K. Okamoto, “Generation and Ion-Pair Structures of Unstable Carbocation Intermediates in Solvolytic Reactions”, in Advances in Carbocation Chemistry (X. Creary, Ed.) 1989, 1, JAI Press, Greenwich, CT.

    Google Scholar 

  • J. P. Richard, T. L. Amyes, M. M. Toteva, “Formation and Stability of Carbocations and Carbanions in Water and Intrinsic Barriers to Their Reactions,” Acc. Chem. Res. 2001, 34, 981–988.

    Article  CAS  Google Scholar 

  • P. E. Dietze, “Nucleophilic Substitution and Solvolysis of Simple Secondary Carbon Substrates,” in Advances in Carbocation Chemistry (J. M. Coxon, Ed.) 1995, 2, JAI, Greenwich, CT.

    Google Scholar 

  • R. F. Langler, “Ionic Reactions of Sulfonic Acid Esters,” Sulfur Rep. 1996, 19, 1–59.

    Article  CAS  Google Scholar 

  • H. Normant, “Hexamethylphosphoramide,” Angew. Chem. Int. Ed. Engl. 1967, 6, 1046–1067.

    Article  CAS  Google Scholar 

  • M. S. Shchepinov, V. A. Korshun, “Recent Applications of Bifunctional Trityl Groups,” Chem. Soc. Rev. 2003, 32, 170–180.

    Article  CAS  Google Scholar 

2.6

  • A. R. Katritzky, B. E. Brycki, “Nucleophilic Substitution at Saturated Carbon Atoms. Mechanisms and Mechanistic Borderlines: Evidence from Studies with Neutral Leaving Groups,” J. Phys. Org. Chem. 1988, 1, 1–20.

    Article  CAS  Google Scholar 

  • J. P. Richard, “Simple Relationships Between Carbocation Lifetime and the Mechanism for Nucleophilic Substitution at Saturated Carbon,” in Advances in Carbocation Chemistry (X. Creary, Ed.) 1989, 1, JAI Press, Greenwich, CT.

    Google Scholar 

  • A. R. Katritzky, B. E. Brycki, “The Mechanisms of Nucleophilic Substitution in Aliphatic Compounds,” Chem. Soc. Rev. 1990, 19, 83–105.

    Article  CAS  Google Scholar 

  • H. Lund, K. Daasbjerg, T. Lund, S. U. Pedersen, “On Electron Transfer in Aliphatic Nucleophilic Substitution,” Acc. Chem. Res. 1995, 28, 313–319.

    Article  CAS  Google Scholar 

2.7

  • B. Capon, Neighboring group participation, Plenum Press, New York:, 1976.

    Google Scholar 

  • G. M. Kramer, C. G. Scouten, “The 2-Norbornyl Carbonium Ion Stabilizing Conditions: An Assessment of Structural Probes”, in Advances in Carbocation Chemistry (X. Creary, Ed.) 1989, 1, JAI Press, Greenwich, CT.

    Google Scholar 

2.9

  • J. M. Klunder, G. H. Posner, “Alkylations of Nonstabilized Carbanions,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 3, 207, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • H. Ahlbrecht, “Formation of C-C Bonds by Alkylation of σ-Type Organometallic Compounds,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 2, 645–663, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • D. W. Knight, “Alkylations of Vinyl Carbanions,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 3, 241, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • H. Ahlbrecht, “Formation of C-C Bonds by Alkylation of π-Type Organometallic Compounds,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 2, 664–696, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • P. J. Garratt, “Alkylations of Alkynyl Carbanions,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 3, 271, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • G. H. Posner, “Substitution Reactions Using Organocopper Reagents,” Org. React. 1975, 22, 253–400.

    CAS  Google Scholar 

  • B. H. Lipshutz, S. Sengupta, “Organocopper Reagents: Substitution, Conjugate Addition, Carbo/Metallocupration, and Other Reactions,” Org. React. 1992, 41, 135–631.

    CAS  Google Scholar 

  • M. V. Bhatt, S. U. Kulkarni, “Cleavage of Ethers,” Synthesis 1983, 249–282.

    Google Scholar 

  • C. Bonini, G. Righi, “Regio-and Chemoselective Synthesis of Halohydrins by Cleavage of Oxiranes with Metal Halides,” Synthesis 1994, 225–238.

    Google Scholar 

  • M. S. Gibson, R. W. Bradshaw, “The Gabriel Synthesis of Primary Amines,” Angew. Chem. Int. Ed. Engl. 1968, 7, 919–930.

    Article  CAS  Google Scholar 

  • U. Raguarsson, L. Grehn, “Novel Gabriel Reagents,” Acc. Chem. Res. 1991, 24, 285–289.

    Article  Google Scholar 

  • T. H. Black, “The Preparation and Reactions of Diazomethane,” Aldrichimica Acta 1983, 16, 3–10.

    CAS  Google Scholar 

  • R. Appel, “Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P-N Linkage,” Angew. Chem. Int. Ed. Engl. 1975, 14, 801–811.

    Article  Google Scholar 

  • B. R. Castro, “Replacement of Alcoholic Hydroxy Groups by Halogens and Other Nucleophiles via Oxyphosphonium Intermediates,” Org. React. 1983, 29, 1–162.

    CAS  Google Scholar 

  • T. Mukaiyama, “Oxidation-Reduction Condensation,” Angew. Chem. Int. Ed. Engl. 1976, 15, 94–103.

    Article  Google Scholar 

  • D. L. Hughes, “Progress in the Mitsunobu Reaction. A Review,” Org. Prep. Proced. Int. 1996, 28, 127–164.

    Article  CAS  Google Scholar 

  • D. L. Hughes, “The Mitsunobu Reaction,” Org. React. 1992, 42, 335–656.

    CAS  Google Scholar 

  • C. Simon, S. Hosztafi, S. Makleit, “Application of the Mitsunobu Reaction in the Field of Alkaloids,” J. Heterocycl. Chem. 1997, 34, 349–365.

    Article  CAS  Google Scholar 

  • A. Krief, A.-M. Laval, “Ortho-Nitrophenyl Selenocyanate, a Valuable Reagent in Organic Synthesis: Application to One of the Most Powerful Routes to Terminal Olefins from Primary-Alcohols (The Grieco-Sharpless Olefination Reaction) and to the Regioselective Isomerization of Allyl Alcohols),” Bull. Soc. Chim. Fr. 1997, 134, 869–874.

    CAS  Google Scholar 

Further Reading

  • R. M. Magid, “Nucleophilic and Organometallic Displacement Reactions of Allylic Compounds: Stereo-and Regiochemistry,” Tetrahedron 1980, 36, 1901–1930.

    Article  CAS  Google Scholar 

  • Y. Yamamoto, “Formation of C-C Bonds by Reactions Involving Olefinic Double Bonds, Vinylogous Substitution Reactions,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, Stereoselective Synthesis (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), Vol. E21b, 2011, Georg Thieme Verlag, Stuttgart, 1995.

    Google Scholar 

  • L. A. Paquette, C. J. M. Stirling, “The Intramolecular SN′ Reaction,” Tetrahedron 1992, 48, 7383–7423.

    Article  CAS  Google Scholar 

  • R. A. Rossi, A. B. Pierini, A. B. Penenory, “Nucleophilic Substitution Reactions by Electron Transfer,” Chem. Rev. 2003, 103, 71–167.

    Article  CAS  Google Scholar 

  • R. M. Hanson, “The Synthetic Methodology of Nonracemic Glycidol and Related 2,3-Epoxy Alcohols,” Chem. Rev. 1991, 91, 437–476.

    Article  CAS  Google Scholar 

  • P. C. A. Pena, S. M. Roberts, “The Chemistry of Epoxy Alcohols,” Curr. Org. Chem. 2003, 7, 555–571.

    Article  CAS  Google Scholar 

  • B. B. Lohray, “Cyclic Sulfites and Cyclic Sulfates: Epoxide Like Synthons,” Synthesis 1992, 1035–1052.

    Google Scholar 

  • J. B. Sweeney, “Aziridines: Epoxides’ Ugly Cousins?,” Chem. Soc. Rev. 2002, 31, 247–258.

    Article  CAS  Google Scholar 

  • S. C. Eyley, “The Aliphatic Friedel-Crafts Reaction,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 2, 707, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • Y. Ono, “Dimethyl Carbonate for Environmentally Benign Reactions,” Pure Appl. Chem. 1996, 68, 367–376.

    Article  CAS  Google Scholar 

  • C. M. Sharts, W. A. Sheppard, “Modern Methods to Prepare Monofluoroaliphatic Compounds,” Org. React. 1974, 21, 125–406.

    CAS  Google Scholar 

  • J. E. McMurry, “Ester Cleavages via SN2-Type Dealkylation,” Org. React. 1976, 24, 187–224.

    CAS  Google Scholar 

  • S. K. Taylor, “Reactions of Epoxides with Ester, Ketone and Amide Enolates,” Tetrahedron 2000, 56, 1149–1163.

    Article  CAS  Google Scholar 

  • M. Schelhaas, H. Waldmann, “Protecting Group Strategies in Organic Synthesis’s, Angew. Chem. Int. Ed. Engl. 1996, 35, 2056–2083.

    Article  CAS  Google Scholar 

  • K. Jarowicki, P. Kocienski, “Protecting Groups§, Contemp. Org. Synth. 1996, 3, 397–431.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Nucleophilic Substitution Reactions at the Saturated C Atom. In: Harmata, M. (eds) Organic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03651-4_2

Download citation

Publish with us

Policies and ethics