Skip to main content

Conversion of Phosphorus- or Sulfur-Stabilized C Nucleophiles with Carbonyl Compounds: Addition-induced Condensations

  • Chapter
Organic Mechanisms

Abstract

It is possible to remove a proton from the methyl group of a tetramethylphosphonium halide with strong bases. Thereby, a betaine (see Section 4.7.3) is produced with the structure Me3P-CH2 . A betaine in which the positive and the negative charges are located on adjacent atoms as in Me3P-CH2 is called an ylide. The “yl” part of the name ylide refers to the covalent bond in the substructure P-CH2 . The “ide” part indicates that it also contains an ionic bond. The ylide Me3P-CH2 is the parent compound of the phosphonium ylides or P ylides R1R2R3P-CR4R5 . This terminology is used to distinguish them from other ylides like ammonium ylides or N ylides R1R2R3N-CR4R5 and sulfur ylides or S ylides R1R2S-CR3R4⊖. With strong bases it is also possible to remove a proton from the methyl group of triarylmethylphosphonium halides to form the ylides Ar3P-CR4R5⊖.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. M. J. Williams (Ed.), “Preparation of Alkenes: A Practical Approach,” Oxford University Press, Oxford, U.K., 1996.

    Google Scholar 

11.1

  • H. J. Bestmann, R. Zimmerman, “Synthesis of Phosphonium Ylides,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 6, 171, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • A. W. Johnson, “Ylides and Imines of Phosphorus,” Wiley, New York, 1993.

    Google Scholar 

  • O. I. Kolodiazhnyi, “C-Element-Substituted Phosphorus Ylides,” Tetrahedron 1996, 52, 1855–1929.

    Article  CAS  Google Scholar 

  • G. Wittig, „Von Diylen über Ylide zu meinem Idyll (Nobel Lecture),” Angew. Chem. 1980, 92, 671–675; Angew. Chem. Int. Ed. Engl. 1980, 19 [This paper has not been translated into the English language].

    Article  CAS  Google Scholar 

  • A. Maercker, “The Wittig Reaction,” Org. React. 1965, 14, 270–490.

    CAS  Google Scholar 

  • H. Freyschlag, H. Grassner, A. Nürrenbach, H. Pommer, W. Reif, W. Sarnecki, “Formation and Reactivity of Phosphonium Salts in the Vitamin A Series,” Angew. Chem. Int. Ed. Engl. 1965, 4, 287–291.

    Article  Google Scholar 

  • H. J. Bestmann, O. Vostrowski, “Selected Topics of the Wittig Reaction in the Synthesis of Natural Products,” Top. Curr. Chem. 1983, 109, 85.

    Article  CAS  Google Scholar 

  • H. Pommer, P. C. Thieme, “Industrial Applications of the Wittig Reaction,” Top. Curr. Chem. 1983, 109, 165.

    Article  CAS  Google Scholar 

  • B. E. Maryanoff, A. B. Reitz, “The Wittig Olefination Reaction and Modifications Involving Phosphorylstabilized Carbanions. Stereochemistry, Mechanism, and Selected Synthetic Aspects,” Chem. Rev. 1989, 89, 863–927.

    Article  CAS  Google Scholar 

  • E. Vedejs, M. J. Peterson, “Stereochemistry and Mechanism in the Wittig Reaction,” Top. Stereochem. 1994, 21, 1–167.

    Article  CAS  Google Scholar 

  • K. Becker, “Cycloalkenes by Intramolecular Wittig Reaction,” Tetrahedron 1980, 36, 1717.

    Article  CAS  Google Scholar 

  • B. M. Heron, “Heterocycles from Intramolecular Wittig, Horner and Wadsworth-Emmons Reactions,” Heterocycles 1995, 41, 2357.

    Article  CAS  Google Scholar 

11.2

  • F. R. Hartley (Ed.), “The Chemistry of Organophosphorus Compounds: Phosphine Oxides, Sulfides, Selenides, and Tellurides. The Chemistry of Functional Groups,” Wiley, Chichester, U. K., 1992.

    Google Scholar 

  • W. S. Wadsworth, Jr., “Synthetic Applications of Phosphoryl-Stabilized Anions,” Org. React. 1977, 25, 73–253.

    CAS  Google Scholar 

  • J. Clayden, S. Warren, “Stereocontrol in Organic Synthesis Using the Diphenylphosphoryl Groupv Angew. Chem. Int. Ed. Engl. 1996, 35, 241–270.

    Article  CAS  Google Scholar 

11.3

  • W. S. Wadsworth, Jr., “Synthetic Applications of Phosphoryl-Stabilized Anions,” Org. React. 1977, 25, 73–253.

    CAS  Google Scholar 

  • D. F. Wiemer, “Synthesis of Nonracemic Phosphonates,” Tetrahedron 1997, 53, 16609–16644.

    Article  CAS  Google Scholar 

  • J. Seyden-Penne, “Lithium Ccoordination by Wittig-Horner Reagents Formed by α-Carbonyl Substituted Phosphonates and Phosphine Oxide,” Bull. Soc. Chim. Fr. 1988, 238.

    Google Scholar 

  • T. Rein, T. M. Pedersen, “Asymmetric Wittig Type Reactions,” Synthesis 2002, 579–594.

    Google Scholar 

  • H. B. Kagan, J. C. Fiaud, “Kinetic Resolution,” Top. Stereochem. 1988, 18, 249–330.

    Article  CAS  Google Scholar 

  • H. Pellissier, “Dynamic Kinetic Resolution,” Tetrahedron 2003, 59, 8291–8327.

    Article  CAS  Google Scholar 

11.4

  • P. R. Blakemore, “The Modified Julia Olefination: Alkene Synthesis via the Condensation of Metallated Heteroarylalkylsulfones with Carbonyl Compounds,” J. Chem. Soc. Perkin Trans. I 2002, 2563–2585.

    Google Scholar 

Further Reading

  • P. J. Murphy, J. Brennan, “The Wittig Olefination Reaction with Carbonyl Compounds Other than Aldehydes and Ketones,” Chem. Soc. Rev. 1988, 17, 1–30.

    Article  CAS  Google Scholar 

  • P. J. Murphy, S. E. Lee, “Recent Synthetic Applications of the Non-Classical Wittig Reaction,” J. Chem. Soc.-Perkin Trans 1 1999, 3049–3066.

    Google Scholar 

  • H. J. Cristau, “Synthetic Applications of Metalated Phosphonium Ylides,” Chem. Rev. 1994, 94, 1299.

    Article  CAS  Google Scholar 

  • C. Yuan, S. Li, C. Li, S. Chen, W. Huang, G. Wang, C. Pan, Y. Zhang, “New Strategy for the Synthesis of Functionalized Phosphonic Acids,” Heteroatom Chem. 1997, 8, 103–122.

    Article  CAS  Google Scholar 

  • C. Najera, M. Yus, “Desulfonylation Reactions: Recent Developments,” Tetrahedron 1999, 55, 10547–10658.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Conversion of Phosphorus- or Sulfur-Stabilized C Nucleophiles with Carbonyl Compounds: Addition-induced Condensations. In: Harmata, M. (eds) Organic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03651-4_11

Download citation

Publish with us

Policies and ethics