Skip to main content

Radical Substitution Reactions at the Saturated C Atom

  • Chapter
Organic Mechanisms
  • 6531 Accesses

Abstract

In a substitution reaction, a substituent X of a molecule R-X is replaced by a group Y (Figure 1.1). The subject of this chapter is substitution reactions in which a substituent X that is bound to an sp 3-hybridized C atom is replaced by a group Y via radical intermediates. Radicals are usually short-lived atoms or molecules. They contain one or more unpaired electrons. You should already be familiar with at least two radicals, which by the way are quite stable: NO and O2. NO contains one lone electron; it is therefore a monoradical or simply a “radical.” O2 contains two lone electrons and is therefore a biradical.

Some substrates and products of radical substitution reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • B. Giese, “C-Radicals: General Introduction,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952, C-Radicals (M. Regitz, B. Giese, Eds.), Bd. E19a, 1, Georg Thieme Verlag, Stuttgart, 1989.

    Google Scholar 

  • W. B. Motherwell, D. Crich, “Free-Radical Chain Reactions in Organic Chemistry,” Academic Press, San Diego, CA, 1991.

    Google Scholar 

  • J. E. Leffler, “An Introduction to Free Radicals,” Wiley, New York, 1993.

    Google Scholar 

  • M. J. Perkins, “Radical Chemistry,” Ellis Horwood, London, 1994.

    Google Scholar 

  • J. Fossey, D. Lefort, J. Sorba, “Free Radicals in Organic Chemistry,” Wiley, Chichester, U.K., 1995.

    Google Scholar 

  • Z. B. Alfassi (Ed.), “General Aspects of the Chemistry of Radicals,” Wiley, Chichester, U. K., 1999.

    Google Scholar 

  • Z. B. Alfassi, “The Chemistry of N-Centered Radicals,” Wiley, New York, 1998.

    Google Scholar 

  • J. Hartung, T. Gottwald, K. Spehar, “Selectivity in the Chemistry of Oxygen-Centered Radicals—The Formation of Carbon-Oxygen Bonds,” Synthesis 2002, 1469–1498.

    Google Scholar 

  • Z. B. Alfassi (Ed.), “S-Centered Radicals,” Wiley, Chichester, U. K., 1999.

    Google Scholar 

  • P. P. Power, “Persistent and Stable Radicals of the Heavier Main Group Elements and Related Species,” Chem. Rev. 2003, 103, 789–809.

    Article  CAS  Google Scholar 

  • A. F. Parsons, “An Introduction to Free Radical Chemistry,” Blackwell Science, Oxford, 2000.

    Google Scholar 

1.1

  • R. S. Nyholm, R. J. Gillespie, “Inorganic Stereochemistry,” Q. Rev. Chem. Soc. 1957, 11, 339.

    Article  Google Scholar 

  • R. J. Gillespie, “Electron-Pair Repulsions and Molecular Shape,” Angew. Chem. Int. Ed. Engl. 1967, 6, 819–830.

    Article  CAS  Google Scholar 

  • R. J. Gillespie, “Electron-Pair Repulsion Model for Molecular Geometry,” J. Chem. Educ. 1970, 47, 18.

    Article  CAS  Google Scholar 

  • R. J. Gillespie, “Molecular Geometry,” Van Nostrand Reinhold Co., London, 1972.

    Google Scholar 

  • R. J. Gillespie, “A Defense of the Valence Shell Electron Pair Repulsion (VSEPR) Model,” J. Chem. Educ. 1974, 51, 367.

    Article  CAS  Google Scholar 

  • R. J. Gillespie, “Molekülgeometrie,” Verlag Chemie, Weinheim, 1975.

    Google Scholar 

  • R. J. Gillespie, E. A. Robinson, “Electron Domains and the VSEPR Model of Molecular Geometry,” Angew. Chem. Int. Ed. Engl. 1996, 35, 495–514.

    Article  CAS  Google Scholar 

  • R. Ahlrichs, “Gillespie-und Pauling-Modell — ein Vergleich,” Chem. unserer Zeit, 1980, 14, 18–24.

    Article  CAS  Google Scholar 

  • M. Kaupp, “‘Non-VSEPR’ Structures and Bonding in d0 Systems,” Angew. Chem. Int. Ed. Engl. 2001, 40, 3534–3565.

    Article  CAS  Google Scholar 

1.2

  • C. Rüchardt, H.-D. Beckhaus, “Steric and Electronic Substituent Effects on the Carbon-Carbon Bond,” Top. Curr. Chem. 1985, 130, 1–22.

    Google Scholar 

  • D. D. M. Wayner, D. Griller, “Free Radical Thermochemistry,” in Adv. Free Radical Chem. (D. D. Tanner, Ed.), Vol. 1, Jai Press, Inc., Greenwich, CT, 1990.

    Google Scholar 

  • D. Gutman, “The Controversial Heat of Formation of the tert-C 4 H 9 Radical and the Tertiary Carbon-Hydrogen Bond Energy,” Acc. Chem. Res. 1990, 23, 375–380.

    Article  CAS  Google Scholar 

  • J. C. Walton, “Bridgehead Radicals,” Chem. Soc. Rev. 1992, 21, 105–112.

    Article  CAS  Google Scholar 

  • W. Tsang, “Heats of Formation of Organic Free Radicals by Kinetic Methods,” in: “Energetics of Organic Free Radicals,” J. A. M. Simoes, A. Greenberg, J. F. Liebman (Eds.), Blackie Academic & Professional, Glasgow, 1996, 22–58.

    Google Scholar 

  • A. Studer, S. Amrein, “Tin Hydride Substitutes in Reductive Radical Chain Reactions,” Synthesis 2002, 835–849.

    Google Scholar 

1.3

  • G. S. Hammond, “A Correlation of Reaction Rates,” J. Am. Chem. Soc. 1955, 77, 334–338.

    Article  CAS  Google Scholar 

  • D. Farcasiu, “The Use and Misuse of the Hammond Postulate,” J. Chem. Educ. 1975, 52, 76–79.

    Article  CAS  Google Scholar 

  • B. Giese, “Basis and Limitations of the Reactivity-Selectivity Principle,” Angew. Chem. Int. Ed. Engl. 1977, 16, 125–136.

    Article  Google Scholar 

  • H. Mayr, A. R. Ofial, “The Reactivity-Selectivity Principle: An Imperishable Myth In Organic Chemistry,” Angew. Chem. Int. Ed. Engl. 2006, 45, 1844–1854.

    Article  CAS  Google Scholar 

  • E. Grunwald, “Reaction Coordinates and Structure/Energy Relationships,” Progr. Phys. Org. Chem. 1990, 17, 55–105.

    Article  CAS  Google Scholar 

  • A. L. J. Beckwith, “The Pursuit of Selectivity in Radical Reactions,” Chem. Soc. Rev. 1993, 22, 143–161.

    Article  CAS  Google Scholar 

1.5

  • J. O. Metzger, “Generation of Radicals,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952, C-Radicals (M. Regitz, B. Giese, Eds.), Vol. E19a, 60, Georg Thieme Verlag, Stuttgart, 1989.

    Google Scholar 

  • H. Sidebottom, J. Franklin, “The Atmospheric Fate and Impact of Hydrochlorofluorocarbons and Chlorinated Solvents,” Pure Appl. Chem. 1996, 68, 1757–1769.

    Article  CAS  Google Scholar 

  • M. J. Molina, “Polar Ozone Depletion (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 1996, 35, 1778–1785.

    Article  CAS  Google Scholar 

  • F. S. Rowland, “Stratospheric Ozone Depletion by Chlorofluorocarbons (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 1996, 35, 1786–1798.

    Article  CAS  Google Scholar 

1.6

  • R. C. Larock, “Organomercury Compounds in Organic Synthesis,” Angew. Chem. Int. Ed. Engl. 1978, 17, 27–37.

    Article  Google Scholar 

  • G. A. Russell, “Free Radical Chain Reactions Involving Alkyl-and Alkenylmercurials,” Acc. Chem. Res. 1989, 22, 1–8.

    Article  CAS  Google Scholar 

  • G. A. Russell, “Free Radical Reactions Involving Saturated and Unsaturated Alkylmercurials,” in Advances in Free Radical Chemistry (D. D. Tanner, Ed.), 1990, 1, Jai Press, Greenwich, CT.

    Google Scholar 

1.7

  • J. O. Metzger, “Reactions of Radicals with Formation of C,Halogen-Bond,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, C-Radicals (M. Regitz, B. Giese, Eds.), Vol. E19a, 268, Georg Thieme Verlag, Stuttgart, 1989.

    Google Scholar 

  • K. U. Ingold, J. Lusztyk, K. D. Raner, “The Unusual and the Unexpected in an Old Reaction. The Photo-chlorination of Alkanes with Molecular Chlorine in Solution,” Acc. Chem. Res. 1990, 23, 219–225.

    Article  CAS  Google Scholar 

  • H. A. Michelsen, “The Reaction of Cl with CH4: A Connection Between Kinetics and Dynamics,” Acc. Chem. Res. 2001, 34, 331–337.

    Article  CAS  Google Scholar 

1.8

  • J. O. Metzger, “Reactions of Radicals with Formation of C,O-Bond,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, C-Radicals (M. Regitz, B. Giese, Eds.), Vol. E19a, 383, Georg Thieme Verlag, Stuttgart, 1989.

    Google Scholar 

  • W. W. Pritzkow, V. Y. Suprun, “Reactivity of Hydrocarbons and Their Individual C-H Bonds in Respect to Oxidation Processes Including Peroxy Radicals,” Russ. Chem. Rev. 1996, 65, 497–503.

    Article  Google Scholar 

  • Z. Alfassi, “Peroxy Radicals,” Wiley, New York, 1997.

    Google Scholar 

1.9

  • J. O. Metzger, “Reactions of Radicals with Formation of C,H-Bond,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, C-Radicals (M. Regitz, B. Giese, Eds.), Vol. E19a, 147, Georg Thieme Verlag, Stuttgart, 1989.

    Google Scholar 

  • S. W. McCombie, “Reduction of Saturated Alcohols and Amines to Alkanes,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 8, 811, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • A. Ghosez, B. Giese, T. Göbel, H. Zipse, “Formation of C-H Bonds via Radical Reactions,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 7, 3913–3944, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • C. Chatgilialoglu, “Organosilanes as Radical-Based Reducing Agents in Synthesis,” Acc. Chem. Res. 1992, 25, 180–194.

    Article  Google Scholar 

  • V. Ponec, “Selective De-Oxygenation of Organic Compounds,” Rec. Trav. Chim. Pays-Bas 1996, 115, 451–455.

    CAS  Google Scholar 

  • S. Z. Zard, “On the Trail of Xanthates: Some New Chemistry from an Old Functional Group,” Angew. Chem. Int. Ed. Engl. 1997, 36, 672–685.

    Article  Google Scholar 

  • C. Chatgilialoglu, M. Newcomb, “Hydrogen Donor Abilities of the Group 14 Hydrides,” Adv. Organomet. Chem. 1999, 44, 67–112.

    Article  CAS  Google Scholar 

  • P. A. Baguley, J. C. Walton, “Flight from the Tyranny of Tin: The Quest for Practical Radical Sources Free from Metal Encumbrances,” Angew. Chem. Int. Ed. Engl. 1998, 37, 3072–3082.

    Article  CAS  Google Scholar 

  • A. Studer, S. Amrein, “Tin Hydride Substitutes in Reductive Radical Chain Reactions,” Synthesis 2002, 835–849.

    Google Scholar 

Further Reading

  • A. Ghosez, B. Giese, H. Zipse, W. Mehl, “Reactions of Radicals with Formation of a C,C-Bond,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, C-Radicals (M. Regitz, B. Giese, Eds.), Vol. E19a, 533, Georg Thieme Verlag, Stuttgart, 1989.

    Google Scholar 

  • M. Braun, “Radical Reactions for Carbon-Carbon Bond Formation,” in Organic Synthesis Highlights (J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn, H.-U. Reißig, Eds.), VCH, Weinheim, New York, etc., 1991, 126–130.

    Google Scholar 

  • B. Giese, B. Kopping, T. Göbel, J. Dickhaut, G. Thoma, K. J. Kulicke, F. Trach, “Radical Cyclization Reactions,” Org. React. 1996, 48, 301–856.

    CAS  Google Scholar 

  • D. P. Curran, “The Design and Application of Free Radical Chain Reactions in Organic Synthesis,” Synthesis 1988, 489.

    Google Scholar 

  • T. V. RajanBabu, “Stereochemistry of Intramolecular Free-Radical Cyclization Reactions,” Acc. Chem. Res. 1991, 24, 139–145.

    Article  CAS  Google Scholar 

  • D. P. Curran, N. A. Porter, B. Giese (Eds.), “Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications,” VCH, Weinheim, Germany, 1995.

    Google Scholar 

  • C. P. Jasperse, D. P. Curran, T. L. Fevig, “Radical Reactions in Natural Product Synthesis,” Chem. Rev. 1991, 91, 1237–1286.

    Article  CAS  Google Scholar 

  • G. Mehta, A. Srikrishna, “Synthesis of Polyquinane Natural Products: An Update,” Chem. Rev. 1997, 97, 671–720.

    Article  CAS  Google Scholar 

  • V. K. Singh, B. Thomas, “Recent Developments in General Methodologies for the Synthesis of Linear Triquinanes,” Tetrahedron 1998, 54, 3647–3692.

    Article  CAS  Google Scholar 

  • S. Handa, G. Pattenden, “Free Radical-Mediated Macrocyclizations and Transannular Cyclizations in Synthesis,” Contemp. Org. Synth. 1997, 4, 196–215.

    Article  CAS  Google Scholar 

  • A. J. McCarroll, J. C. Walton, “Programming Organic Molecules: Design and Management of Organic Syntheses Through Free-Radical Cascade Processes,” Angew. Chem. Int. Ed. Engl. 2001, 40, 2224–2248.

    Article  CAS  Google Scholar 

  • G. Descotes, “Radical Functionalization of the Anomeric Center of Carbohydrates and Synthetic Applications,” in Carbohydrates (H. Ogura, A. Hasegawa, T. Suami, Eds.), 89, Kodansha Ltd, Tokyo, Japan, 1992.

    Google Scholar 

  • C. Walling, E. S. Huyser, “Free Radical Addition to Olefins to Form Carbon-Carbon Bonds,” Org. React. 1963, 13, 91–149.

    CAS  Google Scholar 

  • B. Giese, T. Göbel, B. Kopping, H. Zipse, “Formation of C-C Bonds by Addition of Free Radicals to Olefinic Double Bonds,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 4, 2203–2287, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • L. Yet, “Free Radicals in the Synthesis of Medium-Sized Rings,” Tetrahedron 1999, 55, 9349–9403.

    Article  CAS  Google Scholar 

  • H. Ishibashi, T. Sato, M. Ikeda, “5-Endo-Trig Radical Cyclizations,” Synthesis 2002, 695–713.

    Google Scholar 

  • B. K. Banik, “Tributyltin Hydride Induced Intramolecular Aryl Radical Cyclizations: Synthesis of Biologically Interesting Organic Compounds,” Curr. Org. Chem. 1999, 3, 469–496.

    CAS  Google Scholar 

  • H. Fischer, L. Radom, “Factors Controlling the Addition of Carbon-Centered Radicals to Alkenes—An Experimental and Theoretical Perspective,” Angew. Chem. Int. Ed. Engl. 2001, 40, 1340–1371.

    Article  CAS  Google Scholar 

  • B. Giese, “The Stereoselectivity of Intermolecular Free Radical Reactions,” Angew. Chem. Int. Ed. Engl. 1989, 28, 969–980.

    Article  Google Scholar 

  • P. Renaud, M. Gerster, “Use of Lewis Acids in Free Radical Reactions,” Angew. Chem. Int. Ed. Engl. 1998, 37, 2562–2579.

    Article  CAS  Google Scholar 

  • M. P. Sibi, T. R. Ternes, “Stereoselective Radical Reactions,” in Modern Carbonyl Chemistry, Ed. by J. Otera, Wiley-VCH, Weinheim, 2000, 507–538.

    Chapter  Google Scholar 

  • F. W. Stacey, J. F. Harris, Jr, “Formation of Carbon-Heteroatom Bonds by Free Radical Chain Additions to Carbon-Carbon Multiple Bonds,” Org. React. 1963, 13, 150–376.

    CAS  Google Scholar 

  • O. Touster, “The Nitrosation of Aliphatic Carbon Atoms,” Org. React. 1953, 7, 327–377.

    Google Scholar 

  • C. V. Wilson, “The Reaction of Halogens with Silver Salts of Carboxylic Acids,” Org. React. 1957, 9, 332–387.

    Google Scholar 

  • R. A. Sheldon, J. K. Kochi, “Oxidative Decarboxylation of Acids by Lead Tetraacetate,” Org. React. 1972, 19, 279–421.

    CAS  Google Scholar 

  • M. Quaedvlieg, “Methoden zur Herstellung und Umwandlung von aliphatischen Sulfonsäuren und ihren Derivaten,” in Houben-Weyl, Methoden der Org. Chem., 4th ed., Vol. 9, Thieme, Stuttgart, 1955, 345–405; here: “Sulfoxidation,” 366–367 and “Sulfochlorierung,” 391–392.

    Google Scholar 

  • H. Ramloch, G. Täuber, “Verfahren der Großchemie: Die Sulfoxidation,” Chemie in unserer Zeit 1979, 13, 157–162.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Radical Substitution Reactions at the Saturated C Atom. In: Harmata, M. (eds) Organic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03651-4_1

Download citation

Publish with us

Policies and ethics