Skip to main content

MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection for Prescription Compatibility Network

  • Conference paper
Advanced Parallel Processing Technologies (APPT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5737))

Included in the following conference series:

Abstract

Network motifs are basic building blocks in complex networks. Motif detection has recently attracted much attention as a topic to uncover structural design principles of complex networks. Pattern finding is the most computationally expensive step in the process of motif detection. In this paper, we design a pattern finding algorithm based on Google MapReduce to improve the efficiency. Performance evaluation shows our algorithm can facilitates the detection of larger motifs in large size networks and has good scalability. We apply it in the prescription network and find some commonly used prescription network motifs that provide the possibility to further discover the law of prescription compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Block of Complex Networks. Science 5594, 824–827 (2002)

    Article  Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  3. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: ACM OSDI (2004)

    Google Scholar 

  4. Kuramochi, M., Karypis, G.: Finding Frequent Patterns in a Large Sparse Graph. In: Data Mining and Knowledge Discovery, vol. 5810, pp. 243–271. Springer, Heidelberg (2005)

    Google Scholar 

  5. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: 2002 IEEE International Conference on Data Mining, 2002. ICDM 2002. Proceedings, pp. 721–724. IEEE Press, Maebashi City (2002)

    Google Scholar 

  6. Inokucbi, A., Wasbio, T., Motoda, H.: Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning 50(3), 321–354 (2003)

    Article  Google Scholar 

  7. Hong, M., Zhou, H., Wang, W., Shi, B.: An efficient algorithm of frequent connected subgraph extraction. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS, vol. 2637, pp. 40–51. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Yan, X., Hart, J.: CloseGraph: Mining closed frequent patterns. In: The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 286–295. ACM, Washington (2003)

    Google Scholar 

  9. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraph in the presence of isomorphism. In: 2003 International Conference on Data Mining (ICDM), Melbourne, pp. 549–552. IEEE, Florida (2003)

    Google Scholar 

  10. Gudes, E., Shimony, S.E., Vanetik, N.: Discovering frequent graph patterns using disjoint paths. IEEE Transactions on Knowledge and Data Engineering 18(11), 1441–1456 (2006)

    Article  MATH  Google Scholar 

  11. Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learning framework. Journal of Applied Intelligence 4, 297–328 (1994)

    Article  Google Scholar 

  12. Cook, J., Holder, L.: Substructure discovery using minimum description length and background knowledge. J. Artificial Intelligence Research, 231–255 (1994)

    Google Scholar 

  13. Schreiber, F., Schwöbbermeyer, H.: Frequent Concepts and Pattern Detection for the Analysis of Motifs in Networks. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 89–104. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Chen, J., Hsu, W., Lee, M.-L., Ng, S.-K.: Nemofinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs. In: KDD, pp. 106–115 (2006)

    Google Scholar 

  15. Chen, C., Yan, X., Zhu, F., Han, J.: gApprox: Mining frequent approximate patterns from a massive network. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 445–450. Springer, Heidelberg (2007)

    Google Scholar 

  16. Chu, C., Kim, S.K., Lin, Y., Yu, Y.Y., Bradski, G.: Map-Reduce for Machine Learning on Multicore. NIPS (2006)

    Google Scholar 

  17. Chang, E., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., Cui, H.: PSVM: Parallelizing Support Vector Machines on Distributed Computers. NIPS (2007)

    Google Scholar 

  18. Wu, Z., Zhou, X., Liu, B., Chen, J.: Text Mining for Finding Functional Community of Related Genes using TCM Knowledge. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 459–470. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Ying, T., Guo-fu, Y., Gui-bing, L., Jian-ying, C.: Mining Compatibility Rules from Irregular Chinese Traditional Medicine Database by Apriori Agorithm. Journal of Southwest Jiaotong University (English Edition) 15, 288–292 (2007)

    Google Scholar 

  20. Xuezhong, Z., Zhaohui, W.: Distributional Character Clustering for Chinese Text Categorization. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 575–584. Springer, Heidelberg (2004)

    Google Scholar 

  21. Xiao, H., Liang, X., Lu, P., Chan, C.: New method for analysis of Chinese herbal complex prescription and its application. Chinese Science Bulletin 44, 1164–1172 (1999)

    Article  Google Scholar 

  22. Feng, Y., Wu, Z., Zhou, X., Zhou, Z., Fan, W.: Knowledge discovery in traditional Chinese medicine: State of the art and perspectives. Artificial Intelligence in Medicine. 38(3), 219–236 (2006)

    Article  Google Scholar 

  23. Chang, Y.-H., Lin, H.-J., Li, W.-C.: Clinical evaluation of the traditional Chinese prescription Chi-Ju-Di-Huang-Wan for Dry Eye. Phytotherapy Research 19(4), 349–354 (2005)

    Article  Google Scholar 

  24. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs. Technical Report 02-026, Department of Computer Science, University of Minnesota (2002)

    Google Scholar 

  25. Fujing, D.: Prescription: for the Specialty of Chinese Traditional Medicine. Shanghai Publishing House of Science and Technology Press, Shanghai (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Jiang, X., Chen, H., Ma, J., Zhang, X. (2009). MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection for Prescription Compatibility Network. In: Dou, Y., Gruber, R., Joller, J.M. (eds) Advanced Parallel Processing Technologies. APPT 2009. Lecture Notes in Computer Science, vol 5737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03644-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03644-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03643-9

  • Online ISBN: 978-3-642-03644-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics