Skip to main content

Clustering-Based Construction of Hidden Markov Models for Generative Kernels

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

Generative kernels represent theoretically grounded tools able to increase the capabilities of generative classification through a discriminative setting. Fisher Kernel is the first and mostly-used representative, which lies on a widely investigated mathematical background. The manufacture of a generative kernel flows down through a two-step serial pipeline. In the first, “generative” step, a generative model is trained, considering one model for class or a whole model for all the data; then, features or scores are extracted, which encode the contribution of each data point in the generative process. In the second, “discriminative” part, the scores are evaluated by a discriminative machine via a kernel, exploiting the data separability. In this paper we contribute to the first aspect, proposing a novel way to fit the class-data with the generative models, in specific, focusing on Hidden Markov Models (HMM). The idea is to perform model clustering on the unlabeled data in order to discover at best the structure of the entire sample set. Then, the label information is retrieved and generative scores are computed. Experimental, comparative test provides a preliminary idea on the goodness of the novel approach, pushing forward for further developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  2. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden markov model: Analysis and applications. Machine Learning 32, 41–62 (1998)

    Article  MATH  Google Scholar 

  3. Ghahramani, Z., Jordan, M.: Factorial hidden markov models. Machine Learning 29, 245–273 (1997)

    Article  MATH  Google Scholar 

  4. Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (1997)

    Google Scholar 

  5. Bahl, L., Brown, P., de Souza, P., Mercer, R.: Maximum mutual information estimation of hidden Markov model parameters for speech recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Tokyo, Japan, vol. I, pp. 49–52 (2000)

    Google Scholar 

  6. Kaiser, Z., Horvat, B., Kacic, Z.: A novel loss function for the overall risk criterion based discriminative training of HMM models. In: International Conference on Spoken Language Processing, Beijing, China, vol. 2, pp. 887–890 (2000)

    Google Scholar 

  7. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labelling sequence data. In: International Conference on Machine Learning, pp. 591–598 (2001)

    Google Scholar 

  8. Gunawardana, A., Mahajan, M., Acero, A., Platt, J.: Hidden conditional random fields for phone classication. In: Interspeech, Lisbon, Portugal, pp. 1117–1120 (2005)

    Google Scholar 

  9. Ng, A., Jordan, M.: On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  10. Bicego, M., Murino, V., Figueiredo, M.: Similarity-based classification of sequences using hidden markov models. Pattern Recognition 37(12), 2281–2291 (2004)

    Article  MATH  Google Scholar 

  11. Bicego, M., Pękalska, E., Duin, R.P.W.: Group-induced vector spaces. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 190–199. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Layton, M., Gales, M.: Augmented statistical models: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  13. Smith, N.: Using Augmented Statistical Models and Score Spaces for Classification. PhD thesis, Engineering Departement, Cambridge University (2003)

    Google Scholar 

  14. Bicego, M., Pekalska, E., Tax, D., Duin, R.: Component-based discriminative classification for hidden markov models. Pattern Recognition (in press, 2009)

    Google Scholar 

  15. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, pp. 487–493 (1999)

    Google Scholar 

  16. Tsuda, K., Kin, T., Asai, K.: Marginalised kernels for biological sequences. Bioinformatics 18, 268–275 (2002)

    Article  Google Scholar 

  17. Jebara, T., Kondor, I., Howard, A.: Probability product kernels. Journal of Machine Learning Research 5, 819–844 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Moreno, P., Ho, P., Vasconcelos, N.: A kullback-leibler divergence based kernel for svm classification in multimedia applications. In: Proc. of Advances in Neural Information Processing., vol. 16 (2003)

    Google Scholar 

  19. Fine, S., Navratil, J., Gopinath, R.: A hybrid gmm/svm approach to speaker identification. In: IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 417–420 (2001)

    Google Scholar 

  20. Smith, N., Gales, M.: Speech recognition using svms. In: Advances in Neural Information Processing Systems, pp. 1197–1204 (2002)

    Google Scholar 

  21. Chen, L., Man, H., Nefian, A.: Face recognition based on multi-class mapping of fisher scores. Pattern Recognition, 799–811 (2005)

    Google Scholar 

  22. Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. of IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  23. Amari, S.: Natural gradient works efficiently in learning. Neural Computation 10, 251–276 (1998)

    Article  Google Scholar 

  24. Rabiner, L., Lee, C., Juang, B., Wilpon, J.: HMM clustering for connected word recognition. In: Proc. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 405–408 (1989)

    Google Scholar 

  25. Lee, K.: Context-dependent phonetic hidden Markov models for speaker-independent continuous speech recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 38(4), 599–609 (1990)

    Article  Google Scholar 

  26. Kosaka, T., Matsunaga, S., Kuraoka, M.: Speaker-independent phone modeling based on speaker-dependent hmm’s composition and clustering. In: Int. Proc. on Acoustics, Speech, and Signal Processing, vol. 1, pp. 441–444 (1995)

    Google Scholar 

  27. Li, C.: A Bayesian Approach to Temporal Data Clustering using Hidden Markov Model Methodology. PhD thesis, Vanderbilt University (2000)

    Google Scholar 

  28. Li, C., Biswas, G.: Clustering sequence data using hidden Markov model representation. In: Proc. of SPIE 1999 Conf. on Data Mining and Knowledge Discovery: Theory, Tools, and Technology, pp. 14–21 (1999)

    Google Scholar 

  29. Li, C., Biswas, G.: A bayesian approach to temporal data clustering using hidden Markov models. In: Proc. Int. Conf. on Machine Learning, pp. 543–550 (2000)

    Google Scholar 

  30. Li, C., Biswas, G.: Applying the Hidden Markov Model methodology for unsupervised learning of temporal data. Int. Journal of Knowledge-based Intelligent Engineering Systems 6(3), 152–160 (2002)

    Google Scholar 

  31. Li, C., Biswas, G., Dale, M., Dale, P.: Matryoshka: A HMM based temporal data clustering methodology for modeling system dynamics. Intelligent Data Analysis Journal (2002)

    Google Scholar 

  32. Smyth, P.: Clustering sequences with hidden Markov models. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 648. MIT Press, Cambridge (1997)

    Google Scholar 

  33. Cadez, I., Gaffney, S., Smyth, P.: A general probabilistic framework for clustering individuals. In: Proc. of ACM SIGKDD 2000 (2000)

    Google Scholar 

  34. Law, M., Kwok, J.: Rival penalized competitive learning for model-based sequence. In: Proc. Int. Conf. Pattern Recognition, vol. 2, pp. 195–198 (2000)

    Google Scholar 

  35. Bicego, M., Murino, V., Figueiredo, M.: Similarity-based clustering of sequences using hidden Markov models. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS (LNAI), vol. 2734, pp. 86–95. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  36. Panuccio, A., Bicego, M., Murino, V.: A hidden markov model-based approach to sequential data clustering. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 734–742. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  37. Bahlmann, C., Burkhardt, H.: Measuring hmm similarity with the bayes probability of error and its application to online handwriting recognition. In: Proc. Int. Conf. Document Analysis and Recognition, pp. 406–411 (2001)

    Google Scholar 

  38. Jain, A., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  39. He, Y., Kundu, A.: 2-D shape classification using Hidden Markov Model. IEEE Trans. Pattern Analysis Machine Intelligence 13(11), 1172–1184 (1991)

    Article  Google Scholar 

  40. Arica, N., Yarman-Vural, F.: A shape descriptor based on circular Hidden Markov Model. In: IEEE Proc. Int Conf. Pattern Recognition, vol. 1, pp. 924–927 (2000)

    Google Scholar 

  41. Bicego, M., Murino, V.: Investigating Hidden Markov Models’ capabilities in 2D shape classification. IEEE Trans. on Pattern Analysis and Machine Intelligence - PAMI 26(2), 281–286 (2004)

    Article  Google Scholar 

  42. Mollineda, R., Vidal, E., Casacuberta, F.: Cyclic sequence alignments: Approximate versus optimal techniques. Int. Journal of Pattern Recognition and Artificial Intelligence 16(3), 291–299 (2002)

    Article  Google Scholar 

  43. Neuhaus, M., Bunke, H.: Edit distance-based kernel functions for structural pattern classification. Pattern Recognition 39, 1852–1863 (2006)

    Article  MATH  Google Scholar 

  44. Bicego, M., Trudda, A.: 2D shape classification using multifractional brownian motion. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 906–916. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  45. Perina, A., Cristani, M., Castellani, U., Murino, V.: A new generative feature set based on entropy distance for discriminative classification. In: Proc. of Int. Conf. on Image Analysis and Processing, ICIAP 2009 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bicego, M., Cristani, M., Murino, V., Pękalska, E., Duin, R.P.W. (2009). Clustering-Based Construction of Hidden Markov Models for Generative Kernels. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics