Skip to main content

Exemplar-Based Interpolation of Sparsely Sampled Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

A nonlocal variational formulation for interpolating a sparsely sampled image is introduced in this paper. The proposed variational formulation, originally motivated by image inpainting problems, encourages the transfer of information between similar image patches, following the paradigm of exemplar-based methods. Contrary to the classical inpainting problem, no complete patches are available from the sparse image samples, and the patch similarity criterion has to be redefined as here proposed. Initial experimental results with the proposed framework, at very low sampling densities, are very encouraging. We also explore some departures from the variational setting, showing a remarkable ability to recover textures at low sampling densities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. of SIGGRAPH (2000)

    Google Scholar 

  2. Bertalmío, M., Bertozzi, A., Sapiro, G.: Navier-stokes, fluid-dynamics and image and video inpainting. In: Proc. of the IEEE Conf. on CVPR (2001)

    Google Scholar 

  3. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. of IEEE ICIP (1998)

    Google Scholar 

  4. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proc. of the IEEE Conf. on CVPR, pp. 1033–1038 (1999)

    Google Scholar 

  5. Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: Proc. of ICCV (2003)

    Google Scholar 

  6. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based inpainting. IEEE Trans. on IP 13(9), 1200–1212 (2004)

    Google Scholar 

  7. Sun, J., Yuan, L., Jia, J., Shum, H.Y.: Image completion with structure propagation. In: Proc. of SIGGRAPH (2005)

    Google Scholar 

  8. Bertalmío, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture inpainting. IEEE Trans. on Image Processing 12(8), 882–889 (2003)

    Article  Google Scholar 

  9. Cao, F., Gousseau, Y., Masnou, S., Pérez, P.: Geometrically-guided exemplar-based inpainting (submitted, 2008)

    Google Scholar 

  10. Gröchenig, K., Strohmer, T.: Numerical and theoretical aspects of non-uniform sampling of band-limited images. In: Marvasti, F. (ed.) Theory and Practice of Nonuniform Sampling. Kluwer/Plenum (2000)

    Google Scholar 

  11. Chan, T., Shen, J.H.: Mathematical models for local nontexture inpaintings. SIAM J. App. Math. 62(3), 1019–1043 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Arigovindan, M., Suhling, M., Hunziker, P., Unser, M.: Variational image reconstruction from arbitrarily spaced samples: a fast multiresolution spline solution. IEEE Trans. on IP 14(4), 450–460 (2005)

    MathSciNet  Google Scholar 

  13. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proc. of 23rd ACM national conf., pp. 517–524. ACM Press, New York (1968)

    Google Scholar 

  14. Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Processing Magazine 25(2), 21–30 (2008)

    Article  Google Scholar 

  15. Aharon, M., Elad, M., Bruckstein, A.: The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representatio. IEEE Trans. on Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  16. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM MMS 7(1), 214–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elad, M., Starck, J., Querre, P., Donoho, D.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis 19(3), 340–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hays, J., Efros, A.: Scene completion using millions of photographs (2008)

    Google Scholar 

  19. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 57–68. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Lezoray, O., Elmoataz, A., Bougleux, S.: Graph regularization for color image processing. Comput. Vis. Image Underst. 107(1-2), 38–55 (2007)

    Article  MATH  Google Scholar 

  21. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. SIAM Mult. Mod. and Sim. 6(2), 595–630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. Technical Report No. 205, Department of Mathematics, Saarland University, Saarbrücken, Germany (2008)

    Google Scholar 

  23. Arias, P., Caselles, V., Sappiro, G.: A variational framework for non-local image inpainting. In: Proc. of EMMCVPR. Springer, Heidelberg (2009)

    Google Scholar 

  24. Buades, A., Coll, B., Morel, J., Sbert, C.: Self similarity driven color demosaicing. IEEE TIP 18(6), 1192–1202 (2009)

    Google Scholar 

  25. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: Proc. of ICCV (2009)

    Google Scholar 

  26. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the non-local-means to super-resolution reconstruction. IEEE Trans. on IP 18(1), 36–51 (2009)

    Google Scholar 

  27. Bartesaghi, A., Sprechmann, P., Liu, J., Randall, G., Sapiro, G., Subramaniam, S.: Classification and 3d averaging with missing wedge correction in biological electron tomography? Journal of Structural Biology 162(3), 436–450 (2008)

    Article  Google Scholar 

  28. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. CoRR abs/0805.4471 (2008)

    Google Scholar 

  29. Awate, S., Whitaker, R.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. on PAMI 28(3), 364–376 (2006)

    Article  Google Scholar 

  30. Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. on IP 17(7), 1057–1092 (2008)

    MathSciNet  Google Scholar 

  31. Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. on IP 15(10), 2866–2878 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Facciolo, G., Arias, P., Caselles, V., Sapiro, G. (2009). Exemplar-Based Interpolation of Sparsely Sampled Images. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics