Skip to main content

Hierarchical Vibrations: A Structural Decomposition Approach for Image Analysis

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

We present results demonstrating that using a hierarchy of finite element vibration modes in an evolutionary deformable shape search provides a new interesting approach for the localization and segmentation of specific objects in 2D images. The design and coupling of the different levels of the shape hierarchy results in a multi–resolution shape space, which can be exploited in top–down part–based shape matching. The proposed strategy allows for segmenting complex objects from images, classification, as well as localization of the desired object under occlusions. It avoids misregistration by resolving several drawbacks inherent to standard shape–based approaches, which either cannot adequately represent non–linear variations, or rely on exhaustive prior training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biedermann, I.: Human image understanding: Recent research and a theory. Comp. Vis. Graph Imag Proc. 32, 29–73 (1985)

    Article  Google Scholar 

  2. Pentland, A.: Recognition by parts. In: Proc. IEEE ICCV, pp. 612–620 (1987)

    Google Scholar 

  3. Ullman, S., Basri, R.: Recognition by linear combinations of models. IEEE Trans. Patt. Anal. Mach. Intell. 13(10), 992–1005 (1991)

    Article  Google Scholar 

  4. Christmas, W., et al.: Structural matching in computer vision using probabilistic relaxation. IEEE Trans. Patt. Anal. Mach. Intell. 17(8), 749–764 (1995)

    Article  Google Scholar 

  5. Rivlin, E., et al.: Recognition by functional parts. Comp. Vis. Imag. Understand 62(2), 164–176 (1995)

    Article  MATH  Google Scholar 

  6. Zhu, S., Yuille, A.: Forms, A flexible object recognition and modeling system. Int. J. Comp. Vis. 20(3), 187–212 (1996)

    Article  Google Scholar 

  7. Heap, A., Hogg, D.: Improving Specificity in PDMs using a Hierarchical Approach. In: Proc. BMVC, pp. 80–89 (1997)

    Google Scholar 

  8. Tao, H., Huang, T.: Connected vibrations: a modal analysis approach to non-rigid motion tracking. In: Proc. IEEE CVPR, pp. 1424–1426 (1998)

    Google Scholar 

  9. Al-Zubi, S., Tönnies, K.D.: Extending active shape models to incorporate a-priori knowledge about structural variability. In: Van Gool, L. (ed.) DAGM 2002, vol. 2449, p. 338. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comp. Vis. 61(1), 53–79 (2003)

    Google Scholar 

  11. Weyrauch, B., et al.: Component–based Face Recognition with 3D Morphable Models. In: Proc. IEEE Face Proc. Video, pp. 1–5 (2003)

    Google Scholar 

  12. Bergner, S., et al.: Deformable structural models. In: Proc. IEEE ICIP, pp. 1875–1878 (2004)

    Google Scholar 

  13. Sigal, L., et al.: Tracking Loose–Limbed People. In: Proc. IEEE CVPR, pp. 421–428 (2004)

    Google Scholar 

  14. Zhang, J., et al.: Bayesian body localization using mixture of nonlinear shape models. In: Proc. IEEE ICCV, pp. 725–732 (2005)

    Google Scholar 

  15. Ren, X., et al.: Recovering human body configurations using pairwise constraints between parts. In: Proc. IEEE ICCV, pp. 824–831 (2005)

    Google Scholar 

  16. Zambal, S., et al.: Improving segmentation of the left ventricle using a two-component statistical model. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 151–158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Zhe, L., et al.: Hierarchical Part–Template Matching for Human Detection and Segmentation. In: Proc. IEEE ICCV, pp. 1–8 (2007)

    Google Scholar 

  18. Srinivasan, P., Shi, J.: Bottom-up Recognition and Parsing of the Human Body. In: Proc. IEEE CVPR, pp. 1–8 (2007)

    Google Scholar 

  19. Wang, Y., Mori, G.: Multiple tree models for occlusion and spatial constraints in human pose estimation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 710–724. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Edelman, S.: Computational theories of object recognition. Trends Cogn. Sci. 1, 296–304 (1997)

    Article  Google Scholar 

  21. Bienenstock, E., et al.: Compositionality, MDL Priors, and Object Recognition. In: Proc. NIPS, pp. 838–844 (1996)

    Google Scholar 

  22. Zhu, L., Yuille, A.: A Hierarchical Compositional System for Rapid Object Detection. In: Proc. NIPS (2005)

    Google Scholar 

  23. Felzenszwalb, P., Schwartz, J.: Hierarchical Matching of Deformable Shapes. In: Proc. IEEE CVPR, pp. 1–8 (2007)

    Google Scholar 

  24. Yuille, A., et al.: Feature extraction from faces using deformable templates. Int. J. Comp. Vis. 8(2), 99–111 (1992)

    Article  MathSciNet  Google Scholar 

  25. Felzenszwalb, P., et al.: A discriminatively trained, multiscale, deformable part model. In: Proc. IEEE CVPR, pp. 1–8 (2008)

    Google Scholar 

  26. Pentland, A., Sclaroff, S.: Closed-form solutions to physically based shape modeling and recognition. IEEE Trans. Patt. Anal. Mach. Intell. 13(7), 715–729 (1991)

    Article  Google Scholar 

  27. Sclaroff, S., Pentland, A.: Modal matching for correspondence and recognition. IEEE Trans. Patt. Anal. Mach. Intell. 17(6), 545–561 (1995)

    Article  Google Scholar 

  28. Cootes, T., Taylor, C.: Combining point distribution models with shape models based on finite-element analysis. Imag. Vis. Comp. 13(5), 403–409 (1995)

    Article  Google Scholar 

  29. Kendall, D.: A survey of the statistical theory of shape. Stat. Sci. 4, 87–120 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hill, A., Taylor, C.: Model-based image interpretation using genetic algorithms. Imag. Vis. Comp. 10(5), 295–300 (1992)

    Article  Google Scholar 

  31. Felzenszwalb, P.: Representation and detection of deformable shapes. IEEE Trans. Patt. Anal. Mach. Intell. 27(2), 208–220 (2005)

    Article  Google Scholar 

  32. Zheng, Z., et al.: Facial feature localization based on an improved active shape model. Inform. Sci. 178(9), 2215–2223 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engel, K., Toennies, K.D. (2009). Hierarchical Vibrations: A Structural Decomposition Approach for Image Analysis. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics