Skip to main content

Complementary Optic Flow

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

We introduce the concept of complementarity between data and smoothness term in modern variational optic flow methods. First we design a sophisticated data term that incorporates HSV colour representation with higher order constancy assumptions, completely separate robust penalisation, and constraint normalisation. Our anisotropic smoothness term reduces smoothing in the data constraint direction instead of the image edge direction, while enforcing a strong filling-in effect orthogonal to it. This allows optimal complementarity between both terms and avoids undesirable interference. The high quality of our complementary optic flow (COF) approach is demonstrated by the current top ranking result at the Middlebury benchmark.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  2. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)

    Article  Google Scholar 

  3. Black, M.J., Anandan, P.: Robust dynamic motion estimation over time. In: Proc. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, pp. 292–302. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Schnörr, C.: Segmentation of visual motion by minimizing convex non-quadratic functionals. In: Proc. Twelfth International Conference on Pattern Recognition, Jerusalem, Israel, vol. A, pp. 661–663. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  6. Tretiak, O., Pastor, L.: Velocity estimation from image sequences with second order differential operators. In: Proc. Seventh International Conference on Pattern Recognition, Montreal, Canada, July 1984, pp. 16–19 (1984)

    Google Scholar 

  7. Bruhn, A., Weickert, J.: Towards ultimate motion estimation: Combining highest accuracy with real-time performance. In: Proc. Tenth International Conference on Computer Vision, Beijing, China, vol. 1, pp. 749–755. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  8. van de Weijer, J., Gevers, T.: Robust optical flow from photometric invariants. In: Proc. 2004 IEEE International Conference on Image Processing, Singapore, vol. 3, pp. 1835–1838. IEEE Signal Processing Society (October 2004)

    Google Scholar 

  9. Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In: Proc. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, pp. 310–315. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  11. Lai, S.H., Vemuri, B.C.: Reliable and efficient computation of optical flow. International Journal of Computer Vision 29(2), 87–105 (1998)

    Article  Google Scholar 

  12. Alvarez, L., Esclarín, J., Lefébure, M., Sánchez, J.: A PDE model for computing the optical flow. In: Proc. XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, Las Palmas de Gran Canaria, Spain, September 1999, pp. 1349–1356 (1999)

    Google Scholar 

  13. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

  14. Sun, D., Roth, S., Lewis, J., Black, M.: Learning optical flow. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 83–97. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Roth, S., Black, M.: Steerable random fields. In: Proc. 2007 IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  16. Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision 70(3), 257–277 (2006)

    Article  Google Scholar 

  17. Golland, P., Bruckstein, A.M.: Motion from color. Computer Vision and Image Understanding 68(3), 346–362 (1997)

    Article  Google Scholar 

  18. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281–305 (1987)

    Google Scholar 

  19. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)

    Article  Google Scholar 

  20. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  21. Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. Computing Supplement 11, 221–236 (1996)

    Article  Google Scholar 

  22. Baker, S., Roth, S., Scharstein, D., Black, M., Lewis, J., Szeliski, R.: A database and evaluation methodology for optical flow. In: Proc. 2007 IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  23. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zimmer, H. et al. (2009). Complementary Optic Flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics