Skip to main content

Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic Weighted TV

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

Tracking is usually interpreted as finding an object in single consecutive frames. Regularization is done by enforcing temporal smoothness of appearance, shape and motion. We propose a tracker, by interpreting the task of tracking as segmentation of a volume in 3D. Inherently temporal and spatial regularization is unified in a single regularization term. Segmentation is done by a variational approach using anisotropic weighted Total Variation (TV) regularization. The proposed convex energy is solved globally optimal by a fast primal-dual algorithm. Any image feature can be used in the segmentation cue of the proposed Mumford-Shah like data term. As a proof of concept we show experiments using a simple color-based appearance model. As demonstrated in the experiments, our tracking approach is able to handle large variations in shape and size, as well as partial and complete occlusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 13 (2006)

    Article  Google Scholar 

  2. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: British Machine Vision Conference, pp. 47–56 (2006)

    Google Scholar 

  3. Avidan, S.: Ensemble tracking. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 494–501 (2005)

    Google Scholar 

  4. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 142–149 (2000)

    Google Scholar 

  5. Ozuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2007, pp. 1–8 (2007)

    Google Scholar 

  6. Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 553–560 (2006)

    Google Scholar 

  7. Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: Proc. European Conference on Computer Vision, pp. 343–356 (1996)

    Google Scholar 

  8. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–393 (2002)

    Google Scholar 

  9. Yilmaz, A.: Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2007)

    Google Scholar 

  10. Yilmaz, A., Li, X., Shah, M.: Contour based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 1531–1536 (2004)

    Article  Google Scholar 

  11. Fussenegger, M., Roth, P., Bischof, H., Deriche, R., Pinz, A.: A level set framework using a new incremental, robust active shape model for object segmentation and tracking. Image and Vision Computing (in press)

    Google Scholar 

  12. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision 72, 195–215 (2007)

    Article  Google Scholar 

  13. Bibby, C., Reid, I.: Robust real-time visual tracking using pixel-wise posteriors. In: Proc. European Conference on Computer Vision, vol. 2, pp. 831–844 (2008)

    Google Scholar 

  14. Mansouri, A.R., Mitiche, A., Aron, M.: PDE-based region tracking without motion computation by joint space-time segmentation. In: Proc. International Conference on Image Processing, September 2003, vol. 2, pp. III–113–16 (2003)

    Google Scholar 

  15. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Intl. J. of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  16. Boykov, Y., Jolly, M.P.: Interactive organ segmentation using graph cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 26–33 (2003)

    Google Scholar 

  18. Grady, L.: Random walks for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  19. Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: Proc. International Conference on Computer Vision (October 2007)

    Google Scholar 

  20. Ranchin, F., Chambolle, A., Dibos, F.: Total variation minimization and graph cuts for moving objects segmentation. In: Scale Space and Variational Methods in Computer Vision, pp. 743–753 (2008)

    Google Scholar 

  21. Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An experimental comparison of discrete and continuous shape optimization methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 332–345. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Analysis and Machine Intelligence 28(1), 106–118 (2006)

    Article  Google Scholar 

  23. Zach, C., Niethammer, M., Frahm, J.M.: Continuous maximal flows and Wulff shapes: Application to MRFs. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  24. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Global minimizers of the active contour/snake model. In: Free Boundary Problems (FBP): Theory and Applications (2005)

    Google Scholar 

  25. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging and Vision 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  26. Leung, S., Osher, S.: Fast global minimization of the active contour model with TV-inpainting and two-phase denoising. In: 3rd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 149–160 (2005)

    Google Scholar 

  27. Unger, M., Pock, T., Bischof, H.: Continuous globally optimal image segmentation with local constraints. In: Computer Vision Winter Workshop 2008, Moravske Toplice, Slovenija (February 2008)

    Google Scholar 

  28. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: TVSeg - Interactive Total Variation based image Segmentation. In: British Machine Vision Conference 2008, Leeds, UK (September 2008)

    Google Scholar 

  29. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and variational problems. Comm. on Pure and Applied Math. XLII(5), 577–685 (1988)

    MathSciNet  MATH  Google Scholar 

  30. Bresson, X., Chan, T.F.: Non-local unsupervised variational image segmentation models. UCLA CAM Report 08-67 (2008)

    Google Scholar 

  31. Werlberger, M., Pock, T., Unger, M., Bischof, H.: A variational model for interactive shape prior segmentation and real-time tracking. In: International Conference on Scale Space and Variational Methods in Computer Vision (June 2009)

    Google Scholar 

  32. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. on App. Math. 66 (2006)

    Google Scholar 

  33. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  34. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total variation image restoration. UCLA CAM Report 08-33 (2008)

    Google Scholar 

  35. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

    Article  Google Scholar 

  36. Cremers, D.: Dynamical statistical shape priors for level set-based tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(8), 1262–1273 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unger, M., Mauthner, T., Pock, T., Bischof, H. (2009). Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic Weighted TV. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics