Skip to main content

Adaptive Control Using Fixed Point Transformations for Nonlinear Integer and Fractional Order Dynamic Systems

  • Chapter
Aspects of Soft Computing, Intelligent Robotics and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 241))

Abstract

In this paper an automatic learning based adaptive approach elaborated for the control of nonlinear dynamic systems is analyzed from various points of view concerning the imprecision and incompleteness of the available system model used by the controller. The proposed approach is compared to the most elaborated classical techniques using Lyapunov functions and dynamic models that are exact in their mathematical form but imprecise in their parameters, yield globally and asymptotically stable solutions but do not allow the presence of permanent external perturbations. It is shown that the novel control allows both numerical imprecision and enduring external disturbances unknown by the controller, but generally cannot guarantee global stability. It is also shown that its simple structure makes it a prospective candidate for the control of fractional order dynamic phenomena in which the conventional techniques based on the application of integer order time-derivatives of quadratic Lyapunov functions have great difficulties. The possible implementation of the proposed method is mathematically tackled and expounded from various backgrounds as the application of Cauchy Sequences in complete, linear, normed metric (Banach) spaces, and the use of coupled differential equations that may also be obtained from simple quadratic Lyapunov functions the decreasing nature of which generally can be guaranteed only within bounded regions. The operation of the proposed method is illustrated by simulation examples made for integer and fractional order dynamical systems as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mosca, E., Zhang, J.: Stable Design of Predictive Control. Automatica 28, 1229–1233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Varga, A., Lantos, B.: Predictive Control of Powered Lower Limb Prosthetic. In: Proceedings of International Conference of Climbing and Walking Robots, CLAWAR, Brussels, Belgium, pp. 204–214 (2006)

    Google Scholar 

  3. Moldoványi, N.: Model Predictive Control of Crystallisers, PhD Dissertation, Department of Process Engineering, University of Pannonia, Veszprém, Hungary (2008)

    Google Scholar 

  4. Varga, A., Lantos, B.: Eigenvalue Properties of Discrete Time Linear Receding Horizon Control Systems. In: Proceedings of IEEE International Conference on Mechatronics, Budapest, Hungary, pp. 531–536 (2006)

    Google Scholar 

  5. Yu, X., Kacprzyk, J. (eds.): Applied Decision Support with Soft Computing. Studies in Fuzziness and Soft Computing, vol. 124. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  6. Han, Z.-G.: The Application of Model Free Controller. Control Engineering of China 9(4), 22–25 (2002) (in Chinese)

    Google Scholar 

  7. Lin, Y., Liu, S.: A Historical Introduction to Grey Systems Theory. In: Proc. of the IEEE International Conference on Systems, Man and Cybernetics, The Netherlands, vol. 1, pp. 2403–2408 (2004)

    Google Scholar 

  8. Deng, J.L.: Introduction to Grey System Theory. The Journal of Grey System 1, 1–24 (1989)

    MATH  MathSciNet  Google Scholar 

  9. Kolmogorov, A.N.: On the Representation of Continuous Functions of Many Variables by Superpositions of Continuous Functions of One Variable and Addition. Doklady Akademii Nauk USSR 114, 953–956 (1957) (In Russian)

    MATH  MathSciNet  Google Scholar 

  10. Tikk, D., Kóczy, L.T., Gedeon, T.D.: A Survey on the Universal Approximation and its Limits in Soft Computing Techniques," Research Working Paper RWP-IT-01-2001, School of Information Technology, Murdoch University, Perth, W.A, p. 20 (2001)

    Google Scholar 

  11. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, International, Inc., Englewood Cliffs (1991)

    MATH  Google Scholar 

  12. Tar, J.K., Rudas, I.J., Gy, H., Bitó, J. F., Tenreiro Machado, J.A.: On the Robustness of the Slotine-Li and the FPT/SVD-based Adaptive Controllers. WSEAS Transactions on Systems and Control 9(3), 686–700 (2008)

    Google Scholar 

  13. Lyapunov, A.M. (1892) A General Task about the Stability of Motion (in Russian), PhD Thesis (1892)

    Google Scholar 

  14. Lyapunov, A.M.: Stability of Motion. Academic Press, New-York (1966)

    MATH  Google Scholar 

  15. Tenreiro Machado, J.A.: Fractional Calculus and Dynamical Systems. Invited plenary lecture at the IEEE International Conference on Computational Cybernetics (ICCC 2006), Tallinn, Estonia, August 20-22 (2006)

    Google Scholar 

  16. Lacroix, S.: Traité du calcul differentiel et du calcul intégral, Courciel, Paris, France (1819)

    Google Scholar 

  17. Liouville, J.: Mémoire sur le calcul des differentielles a indices quelconcues. J. Ecole Polytechn 13, 71–162 (1832)

    Google Scholar 

  18. Grünwald, A.K.: Über ’begrenzte’ Derivationen und deren Anwendung. Zeitshrift für angewandte Mathematik und Physik 12, 41–48 (1867)

    Google Scholar 

  19. Gemant, A.: Method of Analyzing Experimental Results Obtained from Elasto Viscous Bodies. Physics 7, 311–317 (1936)

    Article  Google Scholar 

  20. Gemant, A.: On Fractional Differentials. The Phylosophical Magzine 25, 540–549 (1938)

    MATH  Google Scholar 

  21. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, London (1974)

    Google Scholar 

  22. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Di®erential Equations. John Wiley and Sons, Chichester (1993)

    Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Torvik, P.J., Bagley, R.L.: On the Appearance of the Fractional Derivative in the Behaviour of Real Materials. ASME Journal of Applied Mechanics 51, 294–298 (1984)

    Article  Google Scholar 

  25. Koh, C.G., Kelly, J.M.: Application of Fractional Derivatives to Seismic Analysis of Base-isolated Models. Earthquake Engineering and Structural Dynamics 19, 229–241 (1990)

    Article  Google Scholar 

  26. Machado, J.A., Azenha, A.: Fractional-Order Hybrid Control of Robot Manipulators. In: Proc. of the IEEE International Conference on Systems, Man and Cybernetics, pp. 788–793 (1998)

    Google Scholar 

  27. Agrawal, O.P.: Solution for a Fractional Diffusion-wave Equation in a Bounded Domain. Nonlinear Dynamics 29, 145–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tar, J.K., Rudas, I.J., Bitó, J.F., Tenreiro Machado, J.A., Kozłowski, K.: Adaptive Controller for Systems of Fractional Dynamics Based on Robust Fixed Point Transformations. In: Proc. of the 7th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2009), Herlany, Slovakia, pp. 117–123 (2009)

    Google Scholar 

  29. Campbell, S.L., Chancelier, J.P., Nikoukhah, R.: Modeling and Simulation in Scilab/Scicos. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  30. Van der Pol, B.: Philos. Mag. 7(3), 65 (1927)

    Google Scholar 

  31. Riewe, F.: Mechanics with Fractional Derivatives. Phys. Rev., E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  32. Klimek, M.: Lagrangian Fractional Mechanics a Noncommutative Approach. Czechoslovak Journal of Physics 55(11) (November 2005)

    Google Scholar 

  33. Baleanu, D., Avkar, T.: Lagrangians with Linear Velocities within Riemann-Liouville Fractional Derivatives. Il Nuovo Cimento B 119(1), 73–79 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tar, J.K., Bitó, J.F. (2009). Adaptive Control Using Fixed Point Transformations for Nonlinear Integer and Fractional Order Dynamic Systems. In: Fodor, J., Kacprzyk, J. (eds) Aspects of Soft Computing, Intelligent Robotics and Control. Studies in Computational Intelligence, vol 241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03633-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03633-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03632-3

  • Online ISBN: 978-3-642-03633-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics