Skip to main content

The Evolution of Nuclear Power Generation for Mars

  • Chapter
Mars
  • 4508 Accesses

Introduction

Among the available energy alternatives nuclear power offers important advantages and in many cases is the only viable alternative given actual operation conditions on Mars. We know that nuclear is the most compact form of energy available. Nuclear power is required at every step of space exploration as a backup form of energy ready to be delivered when all other energy sources cease to deliver. Unfortunately, it also has a number of drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.V.: Space-Reactor Electric Systems: Subsystem Technology Assessment, ESG-DOE-13398, ch. IV. Rockwell International, Canoga Park (1983)

    Google Scholar 

  • Angelo Jr., J.A., Buden, D.: Space Nuclear Power, pp. 159–176. Orbit Book Co., Inc., Malabar (1985)

    Google Scholar 

  • Barghouty, A.F.: Optimization of Crew Shielding Requirement in Reactor-Powered Lunar Surface Missions, p. 25. Marshall Space Flight Center, Alabama (2007), https://www2.sti.nasa.gov

    Google Scholar 

  • Barghouty, A.F.: Optimization of Crew Shielding Requirement in Reactor-Powered Lunar Surface Missions, p. 25. Marshall Space Flight Center, Alabama (NASA/TP—2007–215133) (2007), https://www2.sti.nasa.gov

    Google Scholar 

  • Begg, L., Wetch, J.: Comparison of High Temperature Heat Rejection Concepts to System Related Requirements. In: 22nd Intersociety Energy Conversion Engineering Conference, Philadelphia, PN, vol. 1, pp. 227–234 (1987)

    Google Scholar 

  • Bennett, G.L.: A Look at the Soviet Space Nuclear Power Program. In: Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, Crystal City, Virginia, August 1, pp. 7–11 (1989)

    Google Scholar 

  • Bennett, G.L.: The Safety Review and Approval Process for Space Nuclear Power Sources. Nuclear Safety 32(1), 1–18 (1991)

    Google Scholar 

  • Bennett, G.L.: Space Nuclear Power: Opening the Final Frontier in 4th International Energy Conversion Engineering Conference and Exhibit ( IECEC), San Diego, California, June 26-29, 2006. AIAA 2006-4191. Metaspace Enterprises, Emmett (2006)

    Google Scholar 

  • Britt, F.G.: Discussion of Open Versus Closed Cycle Space Power Burst Energy Systems. In: Transactions of the Sixth Symposium on Space Nuclear Power Systems, Albuquerque, NM, January 8-12, 1989, pp. 357–362 (1989)

    Google Scholar 

  • Buckman, R.W.: Nuclear Space Power Systems Materials Requirements. In: STAIF, Albuquerque, NM, February 2004, p. 815 (2004)

    Google Scholar 

  • Carelli, M.: The Currie Point Radiator in Space Nuclear Power Systems 1988, ch. 45, pp. 367–375. Orbit Book Company, Malabar (1989)

    Google Scholar 

  • CLBk Cosmic Lawrence Berkeley group, Muons -The Cosmic Connection (2005), http://cosmic.lbl.gov/

  • Cucinotta, F.A., Kim, M.-H.Y., Ren, L.: Managing Lunar and Mars Mission Radiation Risks Part I: Cancer Risks, Uncertainties, and Shielding Effectiveness, NASA—TP–2005-213164 NASA Johnson Space Center, Houston, TX (May 2005)

    Google Scholar 

  • Danneskiold, J.: Los Alamos leading fast-paced reactor research to power planned journey to Jupiter’s icy moons in LANL News (December 2008), http://www.news.lanl.gov

  • Department of Energy Office of Defense, Strategic Defense Initiative Multimegawatt Space Nuclear Power Program - Summary (1986)

    Google Scholar 

  • Dudinski, L.: Space Nuclear Power short course in STAIF. Albuquerque, Albuquerque, NM (2004)

    Google Scholar 

  • El-Genk, M.S.: In Ed. Univ. of New Mexico, Institute for Space Nuclear Power Studies, pp. 143–155. Albuquerque, NM and AIP Press, New York, CONF 940101 (1995)

    Google Scholar 

  • El-Genk, M.: Energy Conversion Technologies for Advance Radioisotope and Nuclear Reactor Power Systems for Future Planetary Exploration. In: 21st International Conference on Thermoelectronics 1 (2002)

    Google Scholar 

  • Elliott, J.O., Nakagawa, R., Spilker, T., Lipinski, R., Poston, D.: Design of a Shuttle-Tended Interplanetary Transfer Vehicle Using Nuclear Electric Propulsion, NASA Jet Propulsion Laboratory NEP (2008)

    Google Scholar 

  • Gerwin, R.A., Poston, D.I., Nebel, R.A.: Possibilities for Magnetic Control of Fission Plasma Propulsion. In: 31st AIAA Joint Propulsion Conference and Exhibit San Diego (1995)

    Google Scholar 

  • Giffin, N.: Cosmic Rays. TRIUMF Radiation Protection Training Course (1996)

    Google Scholar 

  • Golombek, M.: Radioisotopic Thermal Generators, probably with plutonium (2006), http://www.Space.com

  • Houts, M.G., Poston, D.I., Ranken, W.D.: HPS: A Space Fission Power System Suitable for Near-Term, Low-Cost Lunar and Planetary Bases. In: Space 1996, The Fifth International Conference and Exposition of Engineering, Construction and Operation in Space (1996)

    Google Scholar 

  • Houts, M.G., Poston, D.I., Trellue, H.R., Baca, J.A.: Planetary Surface Reactor Shielding Using Indigenous Materials. In: Proceedings of Space Technology and Applications International Forum (STAIF 1999), American Institute of Physics Conference Proceedings, vol. (458), p. 1750 (1999)

    Google Scholar 

  • Huerta, P.M., Rajesh, P., Mu, T., Pimblott, S.M., Laverne, J.A.: H atom yields in the radiolysis of water. Radiation Physics and Chemistry 77(10-12), 1203–1207 (2008)

    Article  Google Scholar 

  • International Commission on Radiological Protection, Relative Biologcal Effectiveness (RBE), Quality Factor (Q), and Radiation Weighting Factor (wR) Publication No. 92, p. 80. Elsevier, London (2003)

    Google Scholar 

  • Izhvanov, O.L.: The fuel pin test using electrical heaters (New Mexico Engineering Research Institute, Albuquerque, New Mexico) personal communication (March 1995)

    Google Scholar 

  • Jet Propulsion Laboratory, Mars Rovers Probing Water History at Two Sites (2004), http://www.jpl.nasa.gov/news/news.cfm?release=2004-253

  • Johnson Space Center, Shielding Effectiveness Against GCR at Solar Minimum (2005), http://srag-nt.jsc.nasa.gov/RadDocs/TM104782/techmemo.htm

  • Koening, D.: Rotating Film Radiators for Space Applications in Society of Automotive Engineers SAE/P-85/164, 85–94 (1985)

    Google Scholar 

  • Lipinski, R.J., Lenard, R.X., Wright, S.A., Houts, M.G., Patton, B., Poston, D.: Fission-Based Electric Propulsion for Interstellar Precursor Missions, United States Department of Energy OSTI (1999)

    Google Scholar 

  • Liss, A.: Russia plans Mars nuclear station in BBC. Moscow, 18 August (2003)

    Google Scholar 

  • Malik, T.: Plucky NASA Rovers Complete Fifth Year on Mars in Space 2009/01/03 (2009), http://www.space.com

  • Mars Science Program Synthesis Group, Mars Exploration Strategy 2009-2020, NASA Jet Propulsion Laboratory, Ed. Dan McCleese (2003)

    Google Scholar 

  • Marshall, M., Robinson, E., Park, T., Brownlow, L., Elliot, J.: Nuclear Power Options for Mars Polar Robotic Outpost. In: STAIF 2004 (2004)

    Google Scholar 

  • Mattick, A.T., Hertzberg, A.: The Liquid Droplet Radiator: An Ultra lightweight Heat Rejection System for Efficient Energy Conversion in Space. Acta Astronautica 9(3), 165–172 (1982)

    Article  Google Scholar 

  • Mattick, A.T.: Experimental Test of Liquid Droplet Radiator Performance. Transactions of the Third Symposium on Space Nuclear Power Systems, Albuquerque, NM (TM-1), 1–2 (1986)

    Google Scholar 

  • Mattick, A.T., Hertzberg, A.: Advanced Radiator Systems for Space Power. In: 38th Congress of the International Astronautical Federation, Brighton, UK IAF-87-230 (1987)

    Google Scholar 

  • McGinnis, S.J.: Nuclear Power Systems For Manned Mission To Mars, Astronautical Engineering Monterey, California, United States Naval Postgraduate School, p. 105 (2004)

    Google Scholar 

  • Mondt, J.F., Truscello, V.C., Marriott, A.T.: SP-100 Power Program. In: Eleventh Symposium on Space Nuclear Power and Propulsion, Albuquerque, NM (1995)

    Google Scholar 

  • Mondt, J.F., Truscello, V.C., Marriott, A.T.: SP-100 Power Program. In: 11th Symposium on Space Nuclear Power and Propulsion, Albuquerque, CONF-940101, pp. 143–155 (January 1994)

    Google Scholar 

  • NASA, SP-100 Power Source (2004), http://spacelink.nasa.gov/NASA.Projects/Human.Exploration.and.Development.of.Space/Human.Space.Flight/Shuttle/Shuttle.Missions/Flight.031.STS-34/Galileos.Power.Supply/SP-100.Power.Source

  • NASA, The Vision for Space Exploration (2004), http://www.nasa.gov/pdf/55583main_vision_space_exploration2.pdf

  • NASA, Mars exploration program (2008), http://mars.jpl.nasa.gov/missions/

  • National Research Council, E.E.B., Committee on Advanced Space Based High Power Technologies. In: Advanced Power Sources for Space Missions Washington, pp. 33–34. National Academy Press (1989)

    Google Scholar 

  • Ponomarev-Stepnoi, N.N., Talyzin, V.M., Usov, V.A.: Russian space nuclear power and nuclear thermal propulsion systems. Nuclear News 43(13), 33–46 (2000)

    Google Scholar 

  • Popa-Simil, L.: Long life single load reactor fuel. In: Proceedings ICAPP 2006(1) pp. 140–148 (2006)

    Google Scholar 

  • Popa-Simil, L.: The Nuclear Power Demand and Limitations for Deep Space Exploration in Space Nuclear Conference Boston, MA, ANS (2007)

    Google Scholar 

  • Poston, D.I.: A Computational Model for an Open Cycle Gas Core Nuclear Rocket in Ph. D. Dissertation. Dept. of Nuclear Engineering, Univ. of Michigan, Ann Arbor (June 1994)

    Google Scholar 

  • Poston, D.I., Amiri, B., Chorback, C., Ellis, T., Hehr, B., Yocum, D.: Control Element Options for Compact Fast-Spectrum Space Reactors in Control and Safety Strategies for Space Nuclear Reactors Conf., vol. 1, pp. 537–541 (1995)

    Google Scholar 

  • Poston, D.I., Houts, M.G.: Nuclear and Thermal Analysis of the Heatpipe Power and Bimodal Systems. In: Proceedings of Space Technology & Applications International Forum (STAIF 1996) DOE CONF-960109 (US Department of Energy report), pp. 1083–1093 (1996)

    Google Scholar 

  • Raag, V.: Unicouple thermoelectric converters at Thennotrex, Waltham, Massachusetts, personal communication (August 1995)

    Google Scholar 

  • Rajesh, P., LaVerne, J.A., Pimblott, S.M.: High dose radiolysis of aqueous solutions of chloromethanes: Importance in the storage of radioactive organic wastes. J. Nucl. Mater. 361, 10–17 (2007)

    Article  Google Scholar 

  • Ring, P.J., Sayre, E.D.: Material Requirements, Selection, and Development for the Proposed JIMO Space Power System. In: STAIF, Albuquerque, NM, February 2004, pp. 808–812 (2004)

    Google Scholar 

  • Staub, D.W.: SNAP 10A Summary Report in Atomics International Report NAA-SR-12073 (1967)

    Google Scholar 

  • Students for the Exploration and Development of Space, Radiation and the Human Mars Mission (2004), http://66.102.7.104/custom?q=cache:h2znAlSZvrQJ:www.seds.org/pub/info/mars/RadHuman.mcw+rad+human&hl=en&ie=UTF

  • Thayler, M.R., Binns, W.R., Dowkontt, P.F., Hink, P.L., Klarmann, J., Lijowski, M.L., Olevitch, M.A., Cohen, C.M.S., Cook, W.R., Cummings, A.C., Kecman, B., Leske, R.A., Mewaldt, R.A., Stone, E.C., Dougherty, B.L., Radocinski, R.G., Wiedenbeck, M.E., Christian, E.C., Von Rosenvinge, T.T.: The Cosmic Ray Isotope Spectrometer (CRIS) Experiment Flight Performance. In: American Physical Society, APS/AAPT Joint April Meeting, Columbus, Ohio, abstract #C8.05, April 18-21 (1998)

    Google Scholar 

  • Zinkle, S.J., Wiffen, F.W.: Radiation Effects in Refractory Alloys. In: STAIF 2004, Albuquerque, NM, pp, 733–739 (February 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popa-Simil, L. (2009). The Evolution of Nuclear Power Generation for Mars. In: Badescu, V. (eds) Mars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03629-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03629-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03628-6

  • Online ISBN: 978-3-642-03629-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics