Skip to main content

Available Solar Energy and Weather Forecasting on Mars Surface

  • Chapter
Mars

Introduction

The design of both photovoltaic and photothermal systems operating on Mars requires detailed information on the solar radiation flux incident on the surface of the planet as a function of latitude, longitude, time of day and year. The atmospheric (vertical) optical depth τ is an indicator of solar radiation attenuation in the atmosphere. One can concisely define the optical depth as follows. Let us assume that the sun is at zenith and denote by I 0 and I ground the direct solar irradiance at the top of the atmosphere and at ground level, respectively. Then, usage of τ allows to write the Beer’s law as \({I_{ground}/I_{0}=e^{-\tau}}_{-}\) Suspended dust absorbs solar radiation and emits (and absorbs) longer-wavelength radiation. Mars may be considered ”clear” when the dust content in the atmosphere is low, but when local or global storms occur the optical depth increases and the direct beam solar radiation decreases drastically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P.: Comment on calculation of monthly average insolation on tilted surfaces. Solar Energy 25, 287 (1980)

    Article  Google Scholar 

  • Appelbaum, J., Flood, D.J.: Solar radiation on Mars. Solar Energy 45, 353–363 (1990)

    Article  Google Scholar 

  • Appelbaum, J., Landis, G.A., Sherman, I.: Solar radiation on Mars - Update 1991. Solar Energy 50, 35–51 (1993)

    Article  Google Scholar 

  • Badescu, V.: Dynamic solar space power system. Space Technol. 14, 331–337 (1994)

    Google Scholar 

  • Badescu, V.: Optimization of a solar space power system based on thermodynamic cycles. Int. J. Solar Energy 16, 263–275 (1995)

    Google Scholar 

  • Badescu, V.: Optimum design and operation of a dynamic solar space power system. Energy Conv. Mgmt. 37, 151–160 (1996)

    Article  Google Scholar 

  • Badescu, V.: Use of autoregressive models to generate a series of daily averaged point cloudiness values. Renewable Energy 12, 71–82 (1997)

    Article  Google Scholar 

  • Badescu, V.: Simulation of solar cells utilization on the surface of Mars. Acta Astronautica 43, 443–453 (1998)

    Article  Google Scholar 

  • Badescu, V.: Inference of atmospherical optical depth from near-surface meteorological parameters on Mars. Renewable Energy 24, 45–57 (2001a)

    Article  Google Scholar 

  • Badescu, V.: Synthesis of short-term time series of daily averaged surface pressure on Mars. Environmental Modelling & Software 16, 283–295 (2001b)

    Article  Google Scholar 

  • Badescu, V.: Time-series analysis and forecasting of daily averaged surface pressure on Mars (VL1 and VL2 sites). Meteorol. Atmos. Phys. 78, 195–204 (2001c)

    Article  Google Scholar 

  • Badescu, V. (ed.): Modeling Solar Radiation at the Earth’s Surface, 517 p. Springer, Berlin (2008)

    Google Scholar 

  • Badescu, V., Dinu, C.: Solar energy flux and maximum efficiency of solar thermodynamic power generation in our planetary system. Space Power 12, 151–164 (1993)

    Google Scholar 

  • Badescu, V., Dinu, C.: Maximum performance of omnicolor photothermal and photovoltaic converters in our planetary system. Renewable Energy 6, 765–777 (1995)

    Article  Google Scholar 

  • Badescu, V., Dinu, C.: Optimization of multicolor photothermal power plants in the solar system: a finite-time thermodynamic approach. J. Phys. III France 6, 143–163 (1996)

    Article  Google Scholar 

  • Badescu, V., Popescu, G., Feidt, M.: Design and optimisation of a combination solar collector-thermal engine operating on Mars. Renewable Energy 21, 1–22 (2000)

    Article  Google Scholar 

  • Barnes, J.R.: Time spectral analysis of the midlatitude disturbances in the Martian atmosphere. J. Atmos. Sci. 37, 2002–2015 (1980)

    Article  Google Scholar 

  • Barnes, J.R.: Midlatitude disturbances in the Martian atmosphere: A second Mars year. J. Atmos. Sci. 38, 225–234 (1981)

    Article  Google Scholar 

  • Beish, J.D., Parker, D.C.: Meteorological survey of Mars. J. Geophys. Res. 95(B9), 14657–14675 (1990)

    Article  Google Scholar 

  • Boland, J.: Time series modeling of solar radiation. In: Badescu, V. (ed.) Modeling solar radiation at the Earth’s Surface. Recent Advance, pp. 283–312. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  • Chowdhury, H., Rahman, S.: Comparative assessment of plane-of-array irradiance models. Solar Energy 39, 391–398 (1987)

    Article  Google Scholar 

  • Clancy, R.T., Lee, S.W.: A new look at dust clouds in the Martian atmosphere. Analysis of emission-phase-function sequences from global Viking IRTM observations. Icarus 93, 135–158 (1991)

    Article  Google Scholar 

  • Colburn, D.S., Pollack, J.B., Haberle, R.M.: Diurnal variations in optical depth at Mars. Icarus 79, 159–189 (1989)

    Article  Google Scholar 

  • Crisp, D.: Infrared radiative transfer in the dust-free Martian atmosphere. J. Geophys. Res. 95(B9), 14577–14588 (1990)

    Article  Google Scholar 

  • Festa, R., Ratto, C.F.: Solar radiation statistical properties. Report No IEA-SCHP=9E-4, IEA Task 9, Solar radiation and pyranometer studies, University of Genova (1993)

    Google Scholar 

  • Hourdin, F.: A new representation of the absorption by the CO215-μm band for a Martian global circulation model. J. Geophys. Res. 97(E11), 18319–18335 (1992)

    Article  Google Scholar 

  • Hourdin, F.P., Van Le, F., Forget, F., Talagrand, O.: Meteorological variability and the annual surface pressure cycle on Mars. J. Atmos. Sci. 50, 3625–3640 (1993)

    Article  Google Scholar 

  • Hourdin, F., Forget, F., Talagrand, O.: The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: A comparison between numerical simulations and Viking observations. J. Geophys. Res. 100, 5501–5523 (1995)

    Article  Google Scholar 

  • Iqbal, M.: The influence of collector azimuth on solar heating of residential buildings and the effect of anisotropic sky-diffuse radiation. Solar Energy 26, 249–257 (1981)

    Article  Google Scholar 

  • Jones, R.E.: Effects of overhang shading of windows having arbitrary azimuth. Solar Energy 24, 305–312 (1980)

    Article  Google Scholar 

  • Kahn, R.: Temperature measurements of a Martian local dust storm. J. Geophys. Res. 100(E3), 5265–5275 (1995)

    Article  Google Scholar 

  • Kambezidis, H.E.: Estimation of sunrise and sunset hours for locations on flat and complex terrain: review and advancement. Renewable Energy 11, 485–494 (1997)

    Article  Google Scholar 

  • Lee, S.W.: Viking Lander Meteorology and Atmospheric Opacity Data Set Archive, Volume VL-1001, Laboratory for Atmospheric and Space Physics, Campus Box 392, University of Colorado, CO 80309-0392 (1995)

    Google Scholar 

  • Leovy, C.B., Tillman, J.E., Guest, W.R., Barnes, J.: Interannual variability of Martian weather. In: Hunt, G. (ed.) Recent Advances in Planetary Meteorology, pp. 69–84. Cambridge University Press, New York (1985)

    Google Scholar 

  • Lindner, B.L.: The Martian, polar cap: radiative effects of ozone, clouds and airborne dust. J. Geophys. Res. 95(B9), 1367–1379 (1990)

    Article  Google Scholar 

  • Martin, L.J., Zurek, R.W.: An analysis of the history of dust activity on Mars. J. Geophys. Res. 98(E2), 3221–3246 (1993)

    Article  Google Scholar 

  • Nijegorodov, N., Devon, K.R.S., Jain, P.K., Carlsson, S.: Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously oriented at any latitude. Renewable Energy 4, 529–543 (1994)

    Article  Google Scholar 

  • Paige, D.A., Ingersoll, A.P.: Annual heat balance of Martian polar caps: Viking observations. Science 228, 1160–1168 (1985)

    Article  Google Scholar 

  • Paige, D.A., Wood, K.D.: Modeling the Martian CO2 cycle, 2, Interannual variability. Icarus 99, 15–27 (1992)

    Article  Google Scholar 

  • Pal, A., Ureche, V.: Astronomie (in Romanian). Editura Didactica si Pedagogica, Bucharest, Appendix 5 (1983)

    Google Scholar 

  • Pollack, J.B., Colburn, D., Flasar, F., Kahn, R., Carlson, C.D., Pidek, D.: Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84, 2929–2945 (1979)

    Article  Google Scholar 

  • Pollack, J.B., Haberle, R.M., Murphy, J.R., Shaeffer, J., Lee, H.: Simulation of the general circulation of the Martian atmosphere, 2, seasonal pressure variations. J. Geophys. Res. 98(E2), 3149–3181 (1993)

    Article  Google Scholar 

  • Santee, M., Crisp, D.: Thermal structure and dust loading of the Martian atmosphere during late Southern summer: Mariner 9 revisited. J. Geophys. Res. 98(E2), 3261–3279 (1993)

    Article  Google Scholar 

  • Santee, M.L., Crisp, D.: Diagnostic calculations of the circulation in the Martian atmosphere. J. Geophys. Res. 100(E3), 5465–5484 (1995)

    Article  Google Scholar 

  • Tillman, J.E.: Martian meteorology and dust storms from Viking observations. In: McKay, C.P. (ed.) The case for Mars II. Science and Technology Series, vol. 62. American Astronautical Society, Univelt (1985)

    Google Scholar 

  • Tillman, J.E.: Mars global atmospheric oscillations: Annually synchronized transient normal-mode oscillations and triggering of global dust storms. J. Geophys. Res. 93(D8), 9433–9451 (1988)

    Article  Google Scholar 

  • Van Hemelrijk, E.: The influence of global dust storms on the mean seasonal daily insolation at the Martian surface. Earth, Moon and Planets 33, 157–162 (1985)

    Article  Google Scholar 

  • Van Hemelrijk, E.: The oblatness effect on the mean seasonal daily insolation at the Martian surface during global dust storms. Earth, Moon and Planets 38, 209–216 (1987)

    Article  Google Scholar 

  • Wood, S.E., Paige, D.A.: Modeling the Martian seasonal CO2 cycle: Fitting the Viking lander pressure curves. Icarus 99, 1–14 (1992)

    Article  Google Scholar 

  • Zurek, R.W., Leovy, C.B.: Thermal tides in the dusty Martian atmosphere: A verification of theory. Science 213, 437–439 (1981)

    Article  Google Scholar 

  • Zurek, R.W., Martin, L.J.: Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 98(E2), 3247–3259 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Badescu, V. (2009). Available Solar Energy and Weather Forecasting on Mars Surface. In: Badescu, V. (eds) Mars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03629-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03629-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03628-6

  • Online ISBN: 978-3-642-03629-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics