Skip to main content

Tumbleweed: A New Paradigm for Surveying the Surface of Mars for In-situ Resources

  • Chapter
Book cover Mars

Introduction

Mars missions to date have interrogated the planet at very large scales using orbital platforms or at very small scales intensively studying relatively small patches of terrain. In order to facilitate discovery and eventual utilization of Martian resources for future missions, a strategy that will bridge these scales and allow assessment of large areas of Mars in pursuit of a resource base will be essential. Long-range surveys of in-situ resources on the surface of Mars could be readily accomplished with a fleet of Tumbleweeds - vehicles capable of using the readily available Martian wind to traverse the surface of Mars with minimal power, while optimizing their capabilities to perform a variety of measurements over relatively large swaths of terrain. These low-cost vehicles fill the niche between orbital reconnaissance and landed rovers, which are capable of much more localized study. Fleets of Tumbleweed vehicles could be used to conduct long-range, randomized surveys with simple, low-cost instrumentation functionally equivalent to conventional coordinate grid sampling. Gradients of many potential volatile resources (e.g. H2O, CH4, etc.) will also tend to follow wind-borne trajectories thus making the mobility mode of the vehicles well matched to the possible target resources. These vehicles can be suitably instrumented for surface and near-surface interrogation and released to roam for the duration of a season or longer, possibly on the residual ice cap or anywhere orbital surveillance indicates that usable resources may exist. Specific instrument selections can service the exact exploration goals of particular survey missions. Many of the desired instruments for resource discovery are currently under development for in-situ applications, but have not yet been miniaturized to the point where they can be integrated into Tumbleweeds. It is anticipated that within a few years, instruments such as gas chromatograph mass spectrometers (GC-MS) and ground-penetrating radar (GPR) will be deployable on Tumbleweed vehicles. The wind-driven strategy conforms to potential natural gradients of moisture and potentially relevant resource gases that also respond to wind vectors. This approach is also useful for characterizing other resources and performing a variety of basic science missions. Inflatable and deployable structure Tumbleweeds are wind-propelled long-range vehicles based on well-developed and field tested technology (Antol et al., 2005; Behar et al., 2004; Carsey et al., 2004; Jones and Yavrouian, 1997; Wilson et al., 2008). Different Tumbleweed configurations can provide the capability to operate in varying terrains and accommodate a wide range of instrument packages making them suitable for autonomous surveys for in-situ natural resources. Tumbleweeds are lightweight and relatively inexpensive, making them very attractive for multiple deployments or piggybacking on larger missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antol, J.: A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed. In: 1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida, AIAA-2005-2520 (2005)

    Google Scholar 

  • Antol, J., Calhoun, P., Flick, J., Hajos, G.A., Kolacinski, R., Minton, D., Owens, R., Parker, J.: Low Cost Mars Surface Exploration: The Mars Tumbleweed, August 2003, NASA/TM-2003-212411 (2003)

    Google Scholar 

  • Antol, J., Calhoun, P.C., Flick, J.J., Hajos, G.A., Keyes, J.P., Stillwagen, F.H., Krizan, S.A., Strickland, C.V., Owens, R., Wisniewski, M.: Mars Tumblweed: FY 2003 Conceptual Design Assessment. NASA Langley Research Center (2005)

    Google Scholar 

  • Antol, J., Chattin, R.L., Copeland, B.M., Krizan, S.A.: The NASA Langley Mars Tumbleweed Rover Prototype. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, AIAA-2006-0064 (2006a)

    Google Scholar 

  • Antol, J., Harris, S.B., Hajos, G.A., Strickland, C.V.: Wind Tunnel Tests of Evolved Mars Tumbleweed Concepts. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, AIAA-2006-0069 (2006b)

    Google Scholar 

  • Apostolopoulous, D., Wagner, M.D., Heys, S., Teza, J.: Results of the Inflatable Robotic Rover Testbed. Carnegie Mellon University (2003)

    Google Scholar 

  • Bae, J., Lee, S.: IEEE, Active sensing based mobile robot exploration. Monterey, CA, Jul 24-28, pp. 934–939 (2005a) <Go to ISI>://000232003500157

    Google Scholar 

  • Bae, J., Lee, S.: IEEE, Exploration algorithm for multiple robots. Seattle, WA, Jul 17-20, pp. 895–900 (2005b) <Go to ISI>://000234272400131

    Google Scholar 

  • Baker, V.R., Gulick, V.C., Kargel, J.S.: Water Resources and Hydrogeology of Mars. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 765–797. The University of Arizona Press, Tucson (1993)

    Google Scholar 

  • Baxter, J.L., Burke, E.K., Garibaldi, J.M., Norman, M.: Multi-robot search and rescue: A potential field based approach, Dec. 11-14, 2006, pp. 9–16. Palmerston, New Zealand (2006) <Go to ISI>://000252076700002

    Google Scholar 

  • Bearman, G.H., Johnson, W.R., Fink, W., Wilson, D.W.: An Intelligently Reconfigurable Snapshot Imaging Spectrometer for Planetary Exploration. In: 38th Lunar and Planetary Science Conference, Houston, Texas, Abstract #1103 (2007)

    Google Scholar 

  • Behar, A., Carsey, F., Matthews, J., Jones, J.: NASA/JPL Tumbleweed Polar Rover. In: IEEE Aerospace Conference, Big Sky, Montana, p. 1003 (2004)

    Google Scholar 

  • Bibring, J.P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., team O: Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006)

    Article  Google Scholar 

  • Blake, D.F., Sarrazin, P., Bish, D.L., Chipera, S.J., Vaniman, D.T., Ming, D., Morris, D., Yen, A.: CHEMIN: A Definitive Mieralogy Instrument on the Mars Science Laboratory (MSL 2009) Rover. In: 7th International Conference on Mars, Pasadena, California, July 9-13 (2007) Abstract #3220

    Google Scholar 

  • Blamont, J.: Personal, Pasadena (1977)

    Google Scholar 

  • Bohlke, J.K., Ericksen, G.E., Revesz, K.: Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. Chem. Geol. 136, 135–152 (1997)

    Article  Google Scholar 

  • Boll, J., van Rijn, R.P.G., Weiler, K.W., Ewen, J.A., Daliparthy, J., Herbert, S.J., Steenhuis, T.S.: Using ground-penetrating radar to detect layers in a sandy field soil. Geoderma 70, 117–132 (1996)

    Article  Google Scholar 

  • Boynton, W.V., Ming, D.W., Sutter, B., Arvidson, R.E., Hoffman, J., Niles, P.B., Smith, P.: Evidence for Calcium Carbonate at the Phoenix Landing Site. In: 40th Lunar and Planetary Science Conference, Houston, TX (2009) Abstract #2434

    Google Scholar 

  • Brandt, O., Langley, K., Kohler, J., Hararan, S.E.: Detection of buried ice and sediment layers in permafrost using multi-frequency Ground Penetrating Radar: A case examination on Svalbard. Remote Sensing of Environment 111, 212–227 (2007)

    Article  Google Scholar 

  • Capizzi, P., Cosentino, P.L.: GPR multi-component data analysis. Near Surface Geophysics 6, 87–95 (2008)

    Google Scholar 

  • Carsey, F., Boston, P.J., Rothschild, L.J., Coleman, M., Jones, J.A., Behar, A.E., Antol, J., Hajos, G.A., Rudisill, M., Parker, J.R., Kelliher, W.C., Carlberg, I.A.: Tumbleweed: Wind Driven Sampling on the Surface of Mars. International Journal of Astrobiology, 85–86 (2004)

    Google Scholar 

  • Clark, C.M., Rock, S.M., Latombe, J.C.: Motion planning for multiple mobile robots using dynamic networks. In: Proceedings of 2003 IEEE International Conference on Robotics and Automation, vol. 1-3, pp. 4222–4227 (2003)

    Google Scholar 

  • Cobos, D., Campbell, G., Campbell, C.: Thermal and Electrical Conductivity Probe (TECP) for Phoenix 2007 Scout. Geophysical Research Abstracts 6 (2004)

    Google Scholar 

  • Conyers, L.B., Goodman, D.: Ground Penetrating Radar: A Primer for the Archaeologist. AltaMira Press (1997)

    Google Scholar 

  • Doolittle, J.A.: Characterizing soil map units with the ground-penetrating radar. Soil Survey Horizons 23, 3–10 (1982)

    Google Scholar 

  • Duke, S.K.: Calibration of ground penetrating radar and calculation of attenuation and dielectric permittivity versus depth. Dept of Geophysics. Colorado School of Mines, Golden, Colorado, 236 (1990)

    Google Scholar 

  • Elam, W.T., Kelliher, W.C., Carlberg, I.A.: A New X-ray Fluorescence Spectrometer for Planetary Exploration. In: 39th Lunar and Planetary Science Conference, Houston, TX, Abstract #1824 (2008)

    Google Scholar 

  • Ericksen, G.E.: Geology and origin of the Chilean nitrate deposits. U.S. Geological Survey Professional Paper P 1188 (1981)

    Google Scholar 

  • Ericksen, G.E.: The Chilean Nitrate Deposits. Am Scientist 71, 366–374 (1983)

    Google Scholar 

  • Ezersky, M., Bruner, I., Keydar, S., Trachtman, P., Rybakov, M.: Integrated study of the sinkhole development site on the Western shores of the Dead Sea using geophysical methods. Near Surface Geophysics 4, 335–343 (2006)

    Google Scholar 

  • Feldman, W.C., Mellon, M.T., Gasnault, O., Maurice, S., Prettyman, T.H.: Volatiles on Mars: Scientific Results from the Mars Odyssey Neutron Spectrometer. In: Bell, J.F. (ed.) The Martian Surface, vol. 9, p. 636. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  • Flick, J.J., Toniolo, M.D.: Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed). In: Martian Rover 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2005-0250 (2005)

    Google Scholar 

  • Gendrin, A., Mangold, N., Bibring, J.P., Langevin, Y., Gondet, B., Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R., LeMouelic, S.: Suffates in martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591 (2005)

    Article  Google Scholar 

  • Golombek, M., Rapp, D.: Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions. J. Geophys. Res-Planets 102, 4117–4129 (1997)

    Article  Google Scholar 

  • Grant, J.A., Schutz, A.E., Campbell, B.A.: Ground-penetrating radar as a tool for probing the shallow subsurface of Mars. J. Geophys Res-Planets 108 (2003); art. no.-8024

    Google Scholar 

  • Haberle, R.M., Hollingsworth, J.L., Colaprete, A., Bridger, A.F.C., Mckay, C.P., Murphy, J.R., Schaeffer, J., Freedman, R.: The NASA /Ames Mars General Circulation Model: Model Improvements and Comparison with Observations. In: Mars Atmosphere Modelling and Observations, Granada, Spain, January 13-15 (2003)

    Google Scholar 

  • Hanrahan, H., Minton, D., DeJarnette, F., Camelier, M.: Mars Tumbleweed: A New Way to Explore Mars. In: Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science Workshop, Lisbon, Portugal, October 6-9 (2003)

    Google Scholar 

  • Hashimoto, H., Aso, S., Yokota, S., Sasaki, A., Ohyama, Y., Kobayashi, H.: Stability of Swarm Robot Based on Local Forces of Local Swarms, Chofu, JAPAN, Aug 20-22, pp. 1201–1204. IEEE, Los Alamitos (2008) <Go to ISI>://000263966700239

    Google Scholar 

  • Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M., Clark, B.C., DeFlores, L.P., Kapit, J.A., Gospodinova, K., Smith, P.H.: Discovery of Perchlorate at the Phoenix Landing Site. Eos Transactions AGU 89 (Fall Meeting Suppl.) (2008) Abstract U14A-04

    Google Scholar 

  • Hoeg, T., Southard, L., Boxerbaum, A., Reis, L., Antol, J., Heldmann, J., Quinn, R.: Tumbleweed Rover Science Mission to Dao Vallis. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12 (2006) AIAA-2006-0070

    Google Scholar 

  • Huffman III, A.C.: Characterization of three-dimensional geological heterogeneities using ground penetrating radar. Department of Geophysics. Colorado School of Mines, Golden, Colorado, 189 (1992)

    Google Scholar 

  • Jakosky, B.M., Zent, A.P.: Water on Mars: Its History and Availability as a Resource. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 737–763. The University of Arizona Press, Tucson (1993)

    Google Scholar 

  • Janes, D.M.: The Mars Ball: A Prototype Martian Rover. The Case for Mars III, Part II 75, 569–574 (1989)

    Google Scholar 

  • Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M., Bearman, G.: Snapshot hyperspectral imaging in ophthalmology. Journal of Biomedical Optics 12 (2007)

    Google Scholar 

  • Jones, J., Yavrouian, A.: JPL New Technology Report (1997)

    Google Scholar 

  • Jones, J.A.: Inflatable Robotics for Planetary Applications. In: 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, I-SAIRAS, Montreal, Canada (2001)

    Google Scholar 

  • Jones, J.A.: Personal Communication, JPL, Pasadena, CA (2009)

    Google Scholar 

  • Jones, J.A., Saunders, S., Blamont, J., Yavrouian, A.: Balloons for controlled roving/landing on Mars. Acta Astronaut 45, 293–300 (1999)

    Article  Google Scholar 

  • Justus, C.G., Duvall, A., Keller, V.W.: Validation of Mars Global Reference Atmospheric Model (Mars-GRAM 2001) and planned new features. Middle and Upper Atmospheres, Active Experiments, and Dusty Plasmas 38, 2633–2638 (2006)

    Google Scholar 

  • Kathage, A., Niessen, J., White, G., Bell, N.: Fast Inspection of Railway Ballast By Means of Impulse GPR Equipped with Horn Antennas. In: Railway Engineering 2005, Edinburgh, Scotland, June 29-30, 2005, vol. 10(9) (2005), http://www.ndt.net/article/v10n09/kathage/kathage.htm

  • Kizito, F., Campbell, C.S., Campbell, G.S., Cobos, D.R., Teare, B.L., Carter, B., Hopmans, J.W.: Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology 352, 367–378 (2008)

    Google Scholar 

  • Kolecki, J.C., Landis, G.: Electrostatic Charging of the Mars Pathfinder Rover and Electrical Charge Phenomena on Mars. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (1999) AIAA-99-0377

    Google Scholar 

  • Kolecki, J.C., Landis, G.P.: Electrical Discharge on The Martian Surface. NASA Lewis Research Center, Cleveland, Ohio (1996)

    Google Scholar 

  • Kounaves, S.P., Catling, D., Clark, B.C., DeFlores, L.P., Gospodinova, K., Hecht, M.H., Kapit, J.A., Ming, D.W., Quinn, R.C.: Aqueous Carbonate Chemistry of the Martian Soil at the Phoenix Landing Site. In: 40th Lunar and Planetary Science Conference, Houston, TX, Abstract #2489 (2009)

    Google Scholar 

  • Krasnopolsky, V.A., Maillard, J.P., Owen, T.C.: Detection of methane in the martian atmosphere: evidence for life? Icarus 172, 537–547 (2004)

    Article  Google Scholar 

  • Kung, K.J.S., Lu, Z.B.: Using Ground-Penetrating Radar To Detect Layers Of Discontinuous Dielectric-Constant. Soil Science Society of America Journal 57, 335–340 (1993)

    Article  Google Scholar 

  • Lambot, S., Rhebergen, J., van den Bosch, I., Slob, E.C., Vanclooster, M.: Measuring the soil water content profile of a sandy soil with an off-ground monostatic ground penetrating radar. Vadose Zone Journal 3, 1063–1071 (2004)

    Article  Google Scholar 

  • Langevin, Y., Poulet, F., Bibring, J.P., Gondet, B.: Sulfates in the north polar region of Mars detected by OMEGA/Mars express. Science 307, 1584–1586 (2005)

    Article  Google Scholar 

  • Lindsley, D.H. (ed.): Oxide minerals: petrologic and magnetic significance. Minerological Society of America (1991)

    Google Scholar 

  • Livingston, G.P., Hutchinson, G.L.: Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Biogenic Trace Gases: Measuring Emissions from Soil and Water, Oxford, Great Britain, pp. 14–51 (1995)

    Google Scholar 

  • Marshall, J., Koppel, L., Bratton, C., Metzger, E., Hecht, M.: In: Situ Identification of Mineral Resources with an X-ray Optical “Hand-Lens” Instrument. ISRU II Technical Interchange Meeting, Houston, TX, November 18-19, Abstract Number 9028 (1997) http://www.lpi.usra.edu/meetings/ISRU-II-97/ISRU-II-97.3rd.html

  • Martin, J.P., Marshall, J.R., Mason, L.W., Scheld, D.: In-Situ Geologic Analyzer for Lunar and Martian Surfaces. In: Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, Long Beach, California, March 3-5 (2008) doi:10.1061/40988(323)100

    Google Scholar 

  • McKay, C.P., Meyer, T.R., Boston, P.J., Nelson, M., MacCallum, T., Gwynne, O.: Water Resources and Hydrogeology of Mars. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 819–843. The University of Arizona Press, Tucson (1993)

    Google Scholar 

  • Moore, L.J., Jol, H.M., Kruse, S., Vanderburgh, S., Kaminsky, G.M.: Annual layers revealed by GPR in the subsurface of a prograding coastal barrier, southwest Washington, USA. Journal of Sedimentary Research 74, 690–696 (2004)

    Article  Google Scholar 

  • Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M., Smith, M.D.: Strong Release of Methane on Mars in Northern Summer 2003. Science 323, 1041–1045 (2009)

    Article  Google Scholar 

  • Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.P., Poulet, F., Bishop, J., Dobrea, E.N., Roach, L., Seelos, F., Arvidson, R.E., Wiseman, S., Green, R., Hash, C., Humm, D., Malaret, E., McGovern, J.A., Seelos, K., Clancy, T., Clark, R., Des Marais, D., Izenberg, N., Knudson, A., Langevin, Y., Martin, T., McGuire, P., Morris, R., Robinson, M., Roush, T., Smith, M., Swayze, G., Taylor, H., Titus, T., Wolff, M.: Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454, 305–309 (2008)

    Article  Google Scholar 

  • Nettwork, Underground mapping, pipeline location technology, and condition assessment. Univ. Birmingham Infrastructure Engineering & Management Research Centre, Civil Engineering, School of Engineering, Edgbaston, Birmingham, UK (2002)

    Google Scholar 

  • Olhoeft, G.R.: The electrical properties of permafrost. Department of Physics. University of Toronto, Toronto, Canada. 172 (1975)

    Google Scholar 

  • Olhoeft, G.R.: Effects of water on the electrical properties of planetary regoliths. In: Colloquium on Water in Planetary Regoliths, Hanover, NH, Dartmouth College, pp. 139–142 (1976)

    Google Scholar 

  • Olhoeft, G.R.: Electrical properties of natural clay permafrost. Canadian Journal of Earth Sciences = Journal Canadien des Sciences de la Terre 14, 16–24 (1977)

    Google Scholar 

  • Olhoeft, G.R.: Impulse radar studies of near surface geological structure. In: Lunar and Planetary Science Conference X, Houston, Texas, pp. 943–945 (1979)

    Google Scholar 

  • Olhoeft, G.R.: Direct detection of hydrocarbon and organic chemicals with ground penetrating radar and complex resistivity. In: NWWA/API Conference on Petroleum Hydrocarbons and organic chemicals in ground water – prevention, detection and restoration, Dublin, OH, November 12-14, 1986, pp. 284–305 (1986)

    Google Scholar 

  • Olhoeft, G.R.: Magnetic and electrical properties of martian particles. In: Sand and Dust on Mars, NASA Conf. Publ. 10074, Greenbelt, Maryland, pp. 44–46 (1991)

    Google Scholar 

  • Olhoeft, G.R.: Ground penetrating radar on Mars. In: Proc. of GPR 1998, 7th Int’l. Conf. On Ground Penetrating Radar, May 27-30, 1998, pp. 387–392. The Univ. of Kansas, Lawrence, KS, USA (1998)

    Google Scholar 

  • Olhoeft, G.R.: Maximizing the information return from ground penetrating radar. Journal Of Applied Geophysics 43, 175–187 (2000)

    Article  Google Scholar 

  • Palli, A., Kohler, J.C., Isaksson, E., Moore, J.C., Pinglot, J.F., Pohjola, V.A., Samuelsson, H.: Spatial and temporal variability of snow accumulation using ground-penetrating radar and ice cores on a Svalbard glacier. J. Glaciol. 48, 417–424 (2002)

    Article  Google Scholar 

  • Physical Sciences Incorporation, PSI: Products, vol. 2009 (2009)

    Google Scholar 

  • Poulet, F., Bibring, J.P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C., Omega, T.: Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623–627 (2005)

    Article  Google Scholar 

  • Rose, S.E., Moody, C.B., James, D.L., Barhorst, A.A.: Drag measurement and dynamic simulation of Martian wind-driven sensor platform concepts. Journal of Fluids and Structures 22, 21–43 (2006)

    Article  Google Scholar 

  • Schaber, G.G., McCauley, J.F., Breed, C.S., Olhoeft, G.R.: Shuttle imaging radar: physical controls on signal penetration and subsurface scattering in the eastern Sahara. Institute of Electrical and Electronic Engineers Trans Geoscience and Remote Sensing GE-24, 603–623 (1986)

    Google Scholar 

  • Schenk, C.J., Gautier, D.L., Olhoeft, G.R., Lucius, J.E.: Internal structure of an aeolian dune using ground penetrating radar. In: Lancaster, N., Rye, K. (eds.) Aeolian Sediments: Ancient and Modern, vol. 16, pp. 61–69. Blackwell Publishing, Malden (1993)

    Chapter  Google Scholar 

  • Schmitt, H.H.: Potential Resources of Mars (2004)

    Google Scholar 

  • Stanley, R.J., Ho, D.K.C., Gader, P.D., Wilson, J.N., Devaney, J.B.: Advances in EMI and GPR algorithms in discrimination mode processing for handheld landmine detectors. In: Proceedings of the SPIE, vol. 5415, pp. 874–882 (2004)

    Google Scholar 

  • Stoker, C.R., Gooding, J.L., Roush, T., Banin, A., Burt, D., Clark, B.C., Flynn, G.J., Gwynne, O.: The Physical and Chemical Properties and Resource Potential of Martian Surface Soils. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 659–707. The University of Arizona Press, Tucson (1993)

    Google Scholar 

  • Sutter, B., Lauer, H.V., Golden, D.C., Boynton, W.V., Morris, R.V., Niles, P.B., Ming, D.W.: Thermal and Evolved Gas Behavior of Calcite under Mars Phoenix TEGA Operating Conditions. In: 40th Lunar and Planetary Science Conference, Houston, TX (2009) Abstract #1843

    Google Scholar 

  • Tarsitano, C.G., Webster, C.R.: Multilaser Herriott cell for planetary tunable laser spectrometers. Applied Optics 46, 6923–6935 (2007)

    Article  Google Scholar 

  • Taylor, G.J.: Human Exploration for Resources on Mars. Science and the Human Exploration of Mars, Greenbelt, Maryland (2001), http://www.lpi.usra.edu/publications/reports/CB-1089/taylor.pdf

  • Wang, H., Yang, B., Jones, J.: Mobility Analysis of an Inflated Tumbleweed Ball under Wind Loads. In: 3rd AIAA Gossamer Spacecraft Forum, Denver, Colorado, April 22-25, AIAA-2002-1556 (2002)

    Google Scholar 

  • West, L.J., Truss, S.W.: Borehole time domain reflectometry in layered sandstone: Impact of measurement technique on vadose zone process identification. Journal of Hydrology 319, 143–162 (2006)

    Article  Google Scholar 

  • Wilson, J.L., Mazzoleni, A.P., DeJarnette, F.R., Antol, J., Hajos, G.A., Strickland, C.V.: Design, analysis, and testing of Mars Tumbleweed rover concepts. Journal of Spacecraft and Rockets 45, 370–382 (2008)

    Article  Google Scholar 

  • Wright, D.L., Olhoeft, G.R., Grover, T.P.: Velocity, attenuation and dispersion electromagnetic tomography in fractured rock. In: U S Geological Survey Toxic Substances Hydrology Program Review, Colorado Springs, CO, September 20-23, 1993, pp. 111–118 (1996) USGS WRI Report 94-4015

    Google Scholar 

  • Yang, C.H., Tong, L.T., Yu, C.Y.: Integrating GPR and RIP methods for water surface detection of geological structures. Terrestrial Atmospheric and Oceanic Sciences 17, 391–404 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhlman, K.R. et al. (2009). Tumbleweed: A New Paradigm for Surveying the Surface of Mars for In-situ Resources. In: Badescu, V. (eds) Mars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03629-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03629-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03628-6

  • Online ISBN: 978-3-642-03629-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics