Skip to main content

On the Topology of Liapunov Functions for Dissipative Periodic Processes

  • Chapter
Emergent Problems in Nonlinear Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 393))

  • 825 Accesses

Summary

The existence and nature of nonlinear oscillations for periodically forced nonlinear differential equations has historically attracted quite a bit of attention in both the pure and the applied mathematics literature. In control theory, it encompasses the study of the steady-state response of control systems to periodic inputs, generalizing the frequency domain theory that underlies classical control and its many successes. More than fifty years ago, Levinson initiated the study of dissipative periodic processes for planar systems, an approach that has since inspired the development of a general theory of dissipative systems for both lumped and distributed nonlinear systems. In the lumped case, dissipative processes have a dissipative Poincaré map \(\mathcal{P}\) and a fair amount of effort has been expended determining the fixed point properties of \(\mathcal{P}\), culminating in the use of a remarkable fixed point theorem of F. Browder which showed that general dissipative periodic processes always have harmonic oscillations. An alternative approach to studying dissipative periodic processes using Liapunov theory was developed by the Russian school of nonlinear analysis, pioneered by Pliss, Krasnosel’skiĭ and others. It is fair to say that the largest technical challenge arising in this approach is the lack of a general, user-friendly description of the the level and sublevel sets of these Liapunov functions. In the equilibrium case, the recent solution of the Poincaré Conjecture in all dimensions has resulted in a simple description and useful description of these sets [3], viz. the sublevel sets are always homeomorphic to a disk \(\mathbb{D}^n\). Fortunately, the techniques underlying the proofs of the Poincaré conjectures have shed enough light on related classification questions that we can now also describe the topology of the level and sublevel sets of Liapunov functions for dissipative periodic process. Among the results we prove in this paper is that these sublevel sets of a Liapunov function are always homeomorphic to solid tori, \(\mathbb{D}^n \times S^1\), and diffeomorphic except perhaps when n = 3. Together with recent sufficient conditions for periodic orbits proven by Brockett and the author [4], these descriptions give streamlined proofs of the existence of harmonic oscillations, and some related results. The proof of our main theorem uses the work of Wilson on the topology of Liapunov functions for attractors, the s-cobordism theorem in dimensions greater than five, the validity of the Poincaré Conjecture in dimension three and four, and a smoothing result of Kirby and Siebenmann for five-manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Browder, F.: On a generalization of the Schauder fixed point theorem. Duke Math. 26, 291–303 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Browder, F.: Fixed point theorems on infinite dimensional manifolds. Trans. of the Amer. Math. Soc. 119, 179–194 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Byrnes, C.I.: On Brockett’s necessary condition for stabilizability and the topology of Liapunov functions on ℝn, CIS (to appear)

    Google Scholar 

  4. Byrnes, C.I., Brockett, R.W.: Nonlinear oscillations and vector fields paired with a closed one-form. Submitted to Amer. J. of Math

    Google Scholar 

  5. Byrnes, C.I., Gilliam, D.S., Isidori, A., Ramsey, J.: On the steady-state behavior of forced nonlinear systems. In: New trends in nonlinear dynamics and control, and their applications. LNCIS, vol. 295, pp. 119–143. Springer, Heidelberg (2003)

    Google Scholar 

  6. Cartwright, M.: Forced oscillations in nearly sinusoidal systems. J. Inst, Elec. Eng. 95, 88–99 (1948)

    MathSciNet  Google Scholar 

  7. Cartwright, M., Littlewood, J.E.: On nonlinear differential equations of the second order I. J. Lond. Math. Soc. 20, 88–94 (1945)

    MathSciNet  Google Scholar 

  8. Farber, M.: Topology of closed one-forms. SURV, vol. 108. Amer. Math. Soc., Providence (2004)

    MATH  Google Scholar 

  9. Freedman, M.H.: The topology of four-dimensional manifolds. J. Diff. Geom. 17, 357–453 (1982)

    MATH  Google Scholar 

  10. Freedman, M.H., Quinn, F.: Topology of 4-manifolds. Princeton University Press, Princeton (1990)

    MATH  Google Scholar 

  11. Fuller, F.B.: Note on trajectories in a solid torus. Ann. of Math. 56, 438–439 (1952)

    Article  MathSciNet  Google Scholar 

  12. Guckenheimer, J., Holmes, P.J.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Applied Math. Sciences, vol. 42. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  13. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. AMS Series: Surv. Series 25 (1988)

    Google Scholar 

  14. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  15. Higman, G.: The units of group rings. In: Proc. London Math. Soc., vol. 46, pp. 231–248 (1940)

    Google Scholar 

  16. Hirsch, M.W.: Differential Topology. Springer, New York (1976)

    MATH  Google Scholar 

  17. Holmes, P.J., Rand, D.A.: Bifurcations of the forced van der Pol oscillator. Quart. Appl. Math. 35, 495–509 (1978)

    MATH  MathSciNet  Google Scholar 

  18. Kervaire, M.: Le théorèm de Barden-Mazur-Stallings. Comment. Math. Helv. 40, 31–42 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations, revised edn. Annals of Math. Studies, vol. AM-88. Princeton University Press, Princeton (1977)

    MATH  Google Scholar 

  20. M. A. Krasnosel’skiĭ and P. P. Zabreĭko, Geometric Methods of Nonlinear analysis, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  21. Kuperberg, G., Kuperberg, K.: Generalized counterexamples to the Seifert conjecture. Ann. of Math. 144, 239–268 (1996)

    Article  MathSciNet  Google Scholar 

  22. Levinson, N.: Transformation theory of non-linear differential equations of the second order. Ann. of Math 49, 738 (1948)

    Article  MathSciNet  Google Scholar 

  23. Levinson, N.: Small periodic perturbations of an autonomous system with a stable orbit. Ann. of Math 52, 727–738 (1950)

    Article  MathSciNet  Google Scholar 

  24. Mazur, B.: On embeddings of spheres. Bull. Amer. Math. Soc. 65, 59–65 (1961)

    Article  MathSciNet  Google Scholar 

  25. Milnor, J.W.: Differential Topology. In: Saaty, T.L. (ed.) Lectures in Modern Mathematics, vol. II. Wiley, Chichester (1964)

    Google Scholar 

  26. Milnor, J.W.: Topology From a Differentiable Viewpoint. University Press of Virgina, Charlotsville (1965)

    Google Scholar 

  27. Milnor, J.W.: Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton (1965)

    MATH  Google Scholar 

  28. Morgan, J.W., Tian, G.: Ricci flow and the Poincaré conjecture, Math. DG/0607607 (2007)

    Google Scholar 

  29. Perelman, G.: Finite extinction time for solutions of the Ricci equation on certain three manifolds, Math. DG/0303109 (2003)

    Google Scholar 

  30. Pliss, V.A.: Nonlocal Problems in the Theory of Nonlinear Oscillations. Academic Press, New York (1966)

    Google Scholar 

  31. Sell, G., You, Y.: Dynamics of Evolutionary Equations. Applied Math Sciences, vol. 143. Springer, New York (2002)

    MATH  Google Scholar 

  32. Smale, S.: Generalized Poincaré conjecture in dimensions greater than 4. Ann. of Math. 64, 399–405 (1956)

    Article  MathSciNet  Google Scholar 

  33. Smale, S.: Differentiable and combinatorial structures on manifolds. Ann. of Math. 74, 498–502 (1961)

    Article  MathSciNet  Google Scholar 

  34. Smale, S.: On the structure of manifolds. Amer. J. of Math. 84, 387–399 (1962)

    MATH  MathSciNet  Google Scholar 

  35. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  36. Stong, R., Wang, Z.: Self-homeomorphisms of 4-manifolds with fundamental group ℤ. Toplology and its Applications 106, 49–56 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Thom, R.: Quelques propriétiés globales des variétiés différentiables. Comment. Math. Helv. 28, 17–86 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  38. van der Pol, B.: Forced oscillations in a circuit with nonlinear resistance, London, Edinburgh and Dublin. Phil. Mag, vol. 3, pp. 65–80 (1927)

    Google Scholar 

  39. Wilson, F.W.: The structure of the level sets of a Lyapunov function. J. of Diff. Eqns. 3, 323–329 (1967)

    Article  MATH  Google Scholar 

  40. Wilson, F.W.: Smoothing derivatives of functions and applications. Trans. of the Amer. Math. Soc. 139, 413–428 (1969)

    Article  MATH  Google Scholar 

  41. Yoshizawa, T.: Stability theory and the existence of periodic solutions and almost periodic solutions. Appl. Math. Sci, vol. 14. Springer, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Byrnes, C.I. (2009). On the Topology of Liapunov Functions for Dissipative Periodic Processes. In: Ghosh, B.K., Martin, C.F., Zhou, Y. (eds) Emergent Problems in Nonlinear Systems and Control. Lecture Notes in Control and Information Sciences, vol 393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03627-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03627-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03626-2

  • Online ISBN: 978-3-642-03627-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics