Skip to main content

Synthesis and Applications of Titanium Oxide Nanotubes

  • Chapter
  • First Online:
Inorganic and Metallic Nanotubular Materials

Part of the book series: Topics in Applied Physics ((TAP,volume 117))

Abstract

Titanium oxide nanotube (TiO2 nanotube, TNT) is synthesized by the low-temperature solution chemical method via the self-organization to form unique open-end nanotubular morphology with typically 8–10 and 5–7 nm in outer and inner diameters, respectively. Because of the mutual and synergy combination of its low-dimensional nanostructure and physical-chemical characteristics of TiO2 semiconductor, properties enhancements and novel functionalization are expected in the TiO2 nanotube. In this chapter, synthesis, nanostructures, formation mechanism, various physicochemical characteristics, and prospects of future application for the TiO2 nanotube are described in detail. In such an oxide material, property control and enhancement is possible by tuning appropriate chemical compositions, crystal structures, and composite structures. Therefore, special emphasis is also placed to introduce modification of the nanotubes by doping and/or nanocompositing to meet the requirements as for the environmental friendly and energy creation systems and various functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refeness

  1. S. Iijima, Nature 354, 56–58 (1991).

    Article  Google Scholar 

  2. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966–68 (1995).

    Article  Google Scholar 

  3. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267, 222–25 (1995).

    Article  Google Scholar 

  4. M.E. Spahr, P. Bitterli, R. Nesper, M. Müler, F. Krumeich, H.U. Nissen, Angew. Chem. Int. Ed. 37, 1263–1265 (1998).

    Article  Google Scholar 

  5. P.M. Ajayan, O. Stephan, Ph. Redlich, C. Colliex, Nature 375, 564–567 (1995).

    Article  Google Scholar 

  6. B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Basumallick, C.N.R. Rao, J. Mater. Res. 12(3), 604–606 (1997).

    Article  Google Scholar 

  7. H. Nakamura, Y. Matsui, J. Am. Chem. Soc. 117(9), 2651–2652 (1995).

    Article  Google Scholar 

  8. P. Hoyer, Langmuir 12, 1411–1413 (1996).

    Article  Google Scholar 

  9. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160–3163 (1998).

    Article  Google Scholar 

  10. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307–1311 (1999).

    Article  Google Scholar 

  11. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331–3334 (2001).

    Article  Google Scholar 

  12. H. Masuda, K. Nishio, N. Baba, Jpn. J. Appl. Phys. 31, L1775–L1777 (1992)

    Article  Google Scholar 

  13. P. Hoyer, Langmuir 12, 1411–1413 (1996).

    Article  Google Scholar 

  14. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, J. Mater. Chem. 9, 2971–2972 (1999).

    Google Scholar 

  15. N. Yoshinaga, S. Aomine, Soil Sci. Plant Nutr. 8(3), 114–121 (1962)

    Google Scholar 

  16. L.A. Bursill, J.L. Peng, L.N. Bourgeois, Philosophical Magazine A 80(1) 105–117 (2000).

    Article  Google Scholar 

  17. F. Keller, M.S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100(9), 411–419 (1953).

    Article  Google Scholar 

  18. S. Yamanaka, T. Hamaguchi, H. Muta, K. Kurosaki, M. Uno, J. Alloy. Comp. 373(1–2), 312–315 (2004).

    Google Scholar 

  19. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27(7), 629–637 (1999).

    Article  Google Scholar 

  20. S. Kato, F. Masuo, Kogyo Kagaku Zasshi, 67, 1136–1140 (1959). (in Japanese)

    Google Scholar 

  21. A. Fujishima, K. Hondam, Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972).

    Article  Google Scholar 

  22. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–758 (1995).

    Article  Google Scholar 

  23. B. O’Regan, M. Grätzel, Nature 353, 737–739 (1991).

    Article  Google Scholar 

  24. S. Hasegawa, Y. Sasaki, S. Matsuhara, Sens. Actuator B 1314, 509–510 (1993).

    Article  Google Scholar 

  25. G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.M. Peng, Appl. Phys. Lett. 79, 3702–3704 (2001).

    Article  Google Scholar 

  26. Q.H. Zhang, L.A. Gao, J. Sun, S. Zheng, Chem. Lett. 31, 226–227 (2002).

    Article  Google Scholar 

  27. Y. Suzuki, S. Yoshikawa, J. Mater. Res. 19, 982–985 (2004).

    Article  Google Scholar 

  28. Z.-Y. Yuan, B.-L. Su, Colloids Surf A, 241(1–3), 173–183 (2004).

    Article  Google Scholar 

  29. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, H. Aritani, J. Mater. Sci. 39, 4239–4245 (2004).

    Article  Google Scholar 

  30. Y. Suzuki, S. Pavasupree, S. Yoshikawa, R. Kawahata, J. Mater. Res. 20, 1063–1070 (2005).

    Article  Google Scholar 

  31. Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Adv. Mater. 14, 1208–1211 (2002).

    Article  Google Scholar 

  32. R. Ma, Y. Bando, T. Sasaki, Chem. Phys. Lett. 380, 577–582 (2003).

    Article  Google Scholar 

  33. R. Ma, K. Fukuda, T. Sasaki, M. Osada, Y. Bando, J. Phys. Chem. B 109, 6210–6214 (2005).

    Article  Google Scholar 

  34. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Darton Trans. 91(20), 3898–3901 (2003).

    Article  Google Scholar 

  35. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, H. Aritani, J. Mater. Sci. 39, 4239–4245 (2004).

    Article  Google Scholar 

  36. Y. Suzuki, S. Yoshikawa: J. Mater. Res. 19, 982–985 (2004).

    Article  Google Scholar 

  37. B. Poudel, W.Z. Wang, C. Dames, J.Y. Huang, S. Kunwar, D.Z. Wang, D. Banerjee, G. Chen, Z.F. Ren, Nanotechnology, 16, 1935–1940 (2005).

    Article  Google Scholar 

  38. T. Sekino, Bull. Ceram. Soc. Jpn. 41(4), 261–271 (2006). (in Japanese)

    Google Scholar 

  39. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18, 1–9 (2006).

    Article  Google Scholar 

  40. Y. Wang, N. Herron, J. Phys. Chem. 95, 525–532 (1991).

    Article  Google Scholar 

  41. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001).

    Article  Google Scholar 

  42. T. Tachikawa, S. Tojo, M. Fujitsuka, T. Sekino, T. Majima, J. Phys. Chem. B 110, 14055–14059 (2006).

    Article  Google Scholar 

  43. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, Phys. Chem. Chem. Phys. 7, 4157–4163 (2005).

    Article  Google Scholar 

  44. K. Inumaru, T. Kasahara, M. Yasui, S. Yamanaka, Chem. Commun. 16, 2131–2133 (2005).

    Article  Google Scholar 

  45. T. Sekino, T. Okamoto, T. Kasuga, T. Kusunose, T. Nakayama, K. Niihara, Key Eng. Mater. 317–318, 251–254 (2006).

    Article  Google Scholar 

  46. H. Tokudome, A. Shimai, Y. Mitsuya, Y. Tsuru, M. Miyauchi, Mater. Integration, 18(1), 31–35 (2005). (in Japanese)

    Google Scholar 

  47. H. Tokudome, M. Miyauchi, Chem. Lett. 33, 1108–1109 (2004)

    Article  Google Scholar 

  48. T. Kasuga, Mater. Integration 18(1), 26–30 (2005). (in Japanese)

    Google Scholar 

  49. K. Sasaki, K. Asanuma, K. Johkura, T. Kasuga, Y. Okouchi, N. Ogiwara, S. Kubota, R. Teng, L. Cui, X. Zhao, Ann. Anat. 188, 137–142 (2006).

    Article  Google Scholar 

  50. M. Yada, M. Mihra, S. Mouri, M. Kuroki, T. Kijima, Adv. Mater. 14, 309–313 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Sekino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sekino, T. (2010). Synthesis and Applications of Titanium Oxide Nanotubes. In: Kijima, T. (eds) Inorganic and Metallic Nanotubular Materials. Topics in Applied Physics, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03622-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03622-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03620-0

  • Online ISBN: 978-3-642-03622-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics