Skip to main content

Synthesis and Applications of Chalcogenide Nanotubes

  • Chapter
  • First Online:
Inorganic and Metallic Nanotubular Materials

Part of the book series: Topics in Applied Physics ((TAP,volume 117))

Abstract

In 1930, Pauling stated that if two faces of a constituent layer of a layered crystal, such as serpentine, are not equivalent, there would be a tendency for the layer to bend owing to the strain induced by the structural mismatch between adjacent layers, resulting in the formation of a cylindrical structure [1]. Similar cylindrical structures were found in misfit-layer chalcogenides that are built up with alternating MCh2 (M = transition metals; Ch = S, Se, Te) sandwiches and M’Ch (M’ = Pb, Sn, Bi, Lanthanides, etc.) double layers [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Pauling, Proc. Nat. Acad. Sci. U.S. 16, 578 (1930)

    Article  Google Scholar 

  2. G.A. Wiegers and A. Meerschaut, Mat. Sci. Forum 100 & 101, 101 (1992)

    Article  Google Scholar 

  3. K. Suzuki, private communication (cf. K. Suzuki, T. Enoki, and K. Imaeda, Solid State Commun. 78, 73, (1991))

    Google Scholar 

  4. S. Iijima, Nature 354, 56 (1991)

    Article  Google Scholar 

  5. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 444 (1992)

    Article  Google Scholar 

  6. P.J. Harris, Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge, 1999) p. 218

    Book  Google Scholar 

  7. C.N.R. Rao, M. Nath, Dalton Trans., 1 (2003)

    Google Scholar 

  8. M. Remskar, Adv. Mater. 16, 1497 (2004)

    Article  Google Scholar 

  9. C.N.R. Rao, A. Govindaraj, Nanotubes and Nanowires (RSC Publ. Cambridge, 2005), p.111

    Book  Google Scholar 

  10. R. Tenne, M. Homyonfer, Y. Feldman, Chem. Mater. 10, 3225 (1998)

    Article  Google Scholar 

  11. R.M. Lieth, J.C.M. Terhell, Physics and Chemistry of Materials with Layered Structures Vol 1, (D. Reidel Publ., Dordrecht, Boston, 1977) p.141

    Google Scholar 

  12. for example, T. Ohtani et al., Mater. Res. Bull 19, 1367 (1984)

    Google Scholar 

  13. G. Seifert et al., Phys. Rev. Lett. 85, 146 (2000)

    Article  Google Scholar 

  14. G.L. Frey et al., Phys. Rev. B 57, 6666 (1998)

    Article  Google Scholar 

  15. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267, 222 (1995)

    Article  Google Scholar 

  16. L. Margulis, P. Dluzewski, Y. Feldman, R. Tenne, J. Microscopy 181, 68 (1996)

    Google Scholar 

  17. M. Hershfinkel et al., J. Am. Chem. Soc. 116, 1914 (1994)

    Article  Google Scholar 

  18. M. Nath, C.N.R. Rao, J. Am. Chem. Soc. 123, 4841 (2001)

    Article  Google Scholar 

  19. D.H. Galvan et al., Fullerene Sci. Technol. 8, 143 (2000)

    Google Scholar 

  20. J. Chen et al. Chem. Commun., 980 (2003)

    Google Scholar 

  21. M. Nath, C.N.R. Rao, Angew. Chem. Int. Ed., 41, 3451 (2002)

    Article  Google Scholar 

  22. J.A. Hollingsworth et al., J. Am. Chem. Soc. 122, 3562 (2000)

    Article  Google Scholar 

  23. C.N. Rao et al., Appl. Phys. Lett. 78, 1853 (2001)

    Article  Google Scholar 

  24. A. Govindaraji et al., Isr. J. Chem. 41, 23 (2001)

    Article  Google Scholar 

  25. L. Dloczik et al., Appl. Phys. Lett. 78, 3687 (2001)

    Article  Google Scholar 

  26. X. Ziang et al., Adv. Mater. 13, 1278 (2001)

    Article  Google Scholar 

  27. H. Cui et al., J. Solid State Chem. 177, 4001 (2004)

    Article  Google Scholar 

  28. H. Lee et al., Nano Lett. 7, 778 (2007)

    Article  Google Scholar 

  29. Sheng-Yi Zhang et al., J. Phys. Chem. C 111, 4168 (2007)

    Article  Google Scholar 

  30. J. Lu, Y. Xie, F. Xu, L. Zhu, J. Mat. Chem. 12, 2755 (2002)

    Article  Google Scholar 

  31. Y. Feldman et al., Science 267, 222 (1995)

    Article  Google Scholar 

  32. A. Rothschild et al., J. Phys. Chem. B 104, 8976 (2000)

    Article  Google Scholar 

  33. M. Nath, A. Achutharao, C.N.R. Rao, Adv. Mater. 13, 283 (2001)

    Article  Google Scholar 

  34. M. Nath, K. Mukhopadhyay, C.N.R. Rao, Chem. Phys. Lett. 352, 163 (2002)

    Article  Google Scholar 

  35. M. Remskar et al., Surface Sci. 433–435, 637 (1999)

    Article  Google Scholar 

  36. T. Ohtani, N. Takayama, K. Ikeda, and M. Araki, Chem. Lett. 33, 100 (2004)

    Article  Google Scholar 

  37. E. Furimsky, Appl. Catal. A 208, 251 (2001)

    Article  Google Scholar 

  38. M. Remskar et al., Adv. Mater. 15, 237 (2003)

    Article  Google Scholar 

  39. K. Ishida, Y. Nino, G.–q. Zheng, Y. Kitaoka, K. Asayama, T. Ohtani, J. Phys. Soc. Japan 6,5, 2341 (1996)

    Google Scholar 

  40. G. Seifert et al., Solid State Commun. 114, 245 (2000)

    Article  Google Scholar 

  41. V. Nemanic et al., Appl. Phys. Lett. 82, 4573 (2003)

    Article  Google Scholar 

  42. A. Rothschild, S.R. Cohen, R. Tenne, Appl. Phys. Lett. 75, 4025 (1999)

    Article  Google Scholar 

  43. L. Rapoport et al., Nature 387, 791 (1997)

    Article  Google Scholar 

  44. L. Rapoport, N. Fleischer, R. Tenne, Adv. Mater. 7–8, 651 (2003)

    Article  Google Scholar 

  45. Y.Q. Zhu et al., J. Am. Chem. Soc. 125, 1329 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukio Ohtani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtani, T. (2010). Synthesis and Applications of Chalcogenide Nanotubes. In: Kijima, T. (eds) Inorganic and Metallic Nanotubular Materials. Topics in Applied Physics, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03622-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03622-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03620-0

  • Online ISBN: 978-3-642-03622-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics