Skip to main content

Conversion of Metal Oxide Nanosheets into Nanotubes

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 117))

Abstract

In this chapter, structural relationship and conversion between two-dimensional (2D) nanosheets and one-dimensional (1D) nanotubes are reviewed. Nanotubes are spontaneously formed upon exfoliation of certain layered materials with a non-centrosymmetric or particular structure, such as K4Nb6O17 and some perovskite-type Ruddlesden–Popper phase K2[A n-1B n O_3n+1] (A = Na, Ca, Sr, La; B = Ta, Ti). On the other hand, colloidal centrosymmetric nanosheets represented by titanium oxide, manganese oxide, and calcium niobium oxide can also be successfully converted into their corresponding nanotubes through a simple ion intercalation/deintercalation procedure at ambient temperature. The conversion validates the hypothesis, in which directly rolling a nanosheet yields a nanotube. The close relationship is of fundamental importance in revealing the formation mechanism of nanotubes and may be used to realize a customized synthesis of nanotubes from a wide range of layered materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Jacobson, Mater. Sci. Forum 152, 1–12 (1994)

    Article  Google Scholar 

  2. T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, H. Nakazawa, J. Am. Chem. Soc. 118, 8329–8335 (1996)

    Article  Google Scholar 

  3. Y. Omomo, T. Sasaki, L. Wang, M. Watanabe, J. Am. Chem. Soc. 125, 3568–3575 (2003)

    Article  Google Scholar 

  4. Y. Ebina, T. Sasaki, M. Harada, M. Watanabe, Chem. Mater. 14, 4390–4395 (2002)

    Article  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  Google Scholar 

  6. R. Abe, K. Shinohara, A. Tanaka, M. Hara, J.N. Kondo, K. Domen, J. Mater. Res. 13, 861–865 (1998)

    Article  Google Scholar 

  7. T. Sasaki, Y. Ebina, T. Tanaka, M. Harada, M. Watanabe, G. Decher, Chem. Mater. 13, 4661–4667 (2001)

    Article  Google Scholar 

  8. H. Xin, R. Ma, L. Wang, Y. Ebina, K. Takada, T. Sasaki, Appl. Phys. Lett. 85, 4187–4189 (2004)

    Article  Google Scholar 

  9. K. Akatsuka, Y. Ebina, M. Muramatsu, T. Sato, H. Hester, D. Kumaresan, R.H. Schmehl, T. Sasaki, M.A. Haga, Langmuir 23, 6730–6736 (2007)

    Article  Google Scholar 

  10. M. Osada, Y. Ebina, K. Takada, T. Sasaki, Adv. Mater. 18, 295–299 (2006)

    Article  Google Scholar 

  11. M. Osada, Y. Ebina, H. Funakubo, S. Yokoyama, T. Kiguchi, K. Takada, T. Sasaki, Adv. Mater. 18, 1023–1027 (2006)

    Article  Google Scholar 

  12. L. Li, R. Ma, Y. Ebina, N. Iyi, T. Sasaki, Chem. Mater. 17, 4386–4391 (2005)

    Article  Google Scholar 

  13. Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 128, 4872–4880 (2006)

    Article  Google Scholar 

  14. R. Ma, Z. Liu, L. Li, N. Iyi, T. Sasaki, J. Mater. Chem. 16, 3809–3813 (2006)

    Article  Google Scholar 

  15. L. Li, R. Ma, Y. Ebina, K. Fukuda, K. Takada, T. Sasaki, J. Am. Chem. Soc. 129, 8000–8007 (2007)

    Article  Google Scholar 

  16. S. Iijima, Nature 354, 56–58 (1991)

    Article  Google Scholar 

  17. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966–967 (1995)

    Article  Google Scholar 

  18. R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360, 444–446 (1992)

    Article  Google Scholar 

  19. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267, 222–225 (1995)

    Article  Google Scholar 

  20. M.E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H.U. Nissen, Angew. Chem. Int. Ed. 37, 1263–1265 (1998)

    Article  Google Scholar 

  21. T. Kasuga, M. Hiramatsu, A. Hosono, T. Sekino, K. Niihara, Adv. Mater. 11, 1307–1311(1999)

    Article  Google Scholar 

  22. G.R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 41, 2446–2461 (2002)

    Article  Google Scholar 

  23. X. Chen, X.M. Sun, Y.D. Li, Inorg. Chem. 41, 4524–4530 (2002)

    Article  Google Scholar 

  24. L.M. Viculis, J.J. Mack, R.B. Kaner, Science 299, 1361 (2003)

    Article  Google Scholar 

  25. G.B. Saupe, C.C. Waraksa, H. Kim, Y.J. Han, D.M. Kaschak, D.M. Skinner, T.E. Mallouk, Chem. Mater. 12, 1556–1562 (2000)

    Article  Google Scholar 

  26. R.E. Schaak, T.E. Mallouk, Chem. Mater. 12, 3427–3434 (2000)

    Article  Google Scholar 

  27. R. Ma, Y. Bando, T. Sasaki, J. Phys. Chem. B 108, 2115–2119 (2004)

    Article  Google Scholar 

  28. O.G. Schmidt, K. Eberl, Nature 410, 168 (2001)

    Article  Google Scholar 

  29. Z.W. Tong, S. Takagi, T. Shimada, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 128, 684–685 (2006)

    Article  Google Scholar 

  30. R. Ma, T. Sasaki, Y. Bando, Chem. Commun. 948–950 (2005)

    Google Scholar 

  31. R. Ma, T. Sasaki, Y. Bando, J. Am. Chem. Soc. 126, 10382–10388 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzhi Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ma, R., Sasaki, T. (2010). Conversion of Metal Oxide Nanosheets into Nanotubes. In: Kijima, T. (eds) Inorganic and Metallic Nanotubular Materials. Topics in Applied Physics, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03622-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03622-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03620-0

  • Online ISBN: 978-3-642-03622-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics