Skip to main content

Spatially-Variant Morpho-Hessian Filter: Efficient Implementation and Application

  • Conference paper
Mathematical Morphology and Its Application to Signal and Image Processing (ISMM 2009)

Abstract

Elongated objects are more difficult to filter than more isotropic ones because they locally comprise fewer pixels. For thin linear objects, this problem is compounded because there is only a restricted set of directions that can be used for filtering, and finding this local direction is not a simple problem. In addition, disconnections can easily appear due to noise. In this paper we tackle both issues by combining a linear filter for direction finding and a morphological one for filtering. More specifically, we use the eigen-analysis of the Hessian for detecting thin, linear objects, and a spatially-variant opening or closing for their enhancement and reconnection. We discuss the theory of spatially-variant morphological filters and present an efficient algorithm. The resulting spatially-variant morphological filter is shown to successfully enhance directions in 2D and 3D examples illustrated with a brain blood vessel segmentation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice-Hall, Englewood Cliffs (2007)

    Google Scholar 

  2. Heijmans, H.: Morphological filters for dummies. In: Maragos, P., Schafer, R.W., Butt, M.A. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, proceedings for ISMM 1996, pp. 127–137. Kluwer Acad., Dordrecht (1996)

    Google Scholar 

  3. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  4. Smith, S.M., Brady, J.M.: Susan a new approach to low level image processing. Int. J. Comput. Vision 23(1), 45–78 (1997)

    Article  Google Scholar 

  5. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, 1998, pp. 839–846 (1998)

    Google Scholar 

  6. Soille, P., Talbot, H.: Directional morphological filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1313–1329 (2001)

    Article  Google Scholar 

  7. Heijmans, H., Buckley, M., Talbot, H.: Path openings and closings. Journal of Mathematical Imaging and Vision 22, 107–119 (2005)

    Article  MathSciNet  Google Scholar 

  8. Talbot, H., Appleton, B.: Efficient complete and incomplete paths openings and closings. Image and Vision Computing 25(4), 416–425 (2007)

    Article  Google Scholar 

  9. Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing 10(7), 1010–1019 (2001)

    Article  MATH  Google Scholar 

  10. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  11. Danielsson, P.E., Lin, Q.: Efficient detection of second-degree variations in 2D and 3D images. Journal of Visual Communication and Image Representation 12, 255–305 (2001)

    Article  Google Scholar 

  12. Deguchi, K., Izumitani, T., Hontani, H.: Detection and enhancement of line structures in an image by anisotropic diffusion. Pattern Recognition Letters 23(12), 1399–1405 (2002)

    Article  MATH  Google Scholar 

  13. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Manniesing, R., Viergever, M., Niessen, W.: Vessel enhancing diffusion: A scale space representation of vessel structures. Medical Image Analysis 10(6), 815–825 (2006)

    Article  Google Scholar 

  15. Perona, P.: Orientation diffusions. IEEE Trans. Image Processing 7, 457–467 (1998)

    Article  Google Scholar 

  16. Lee, T., Talbot, H.: A fast method for detecting and matching linear features in images. In: Proc. DICTA, Brisbane, Australia, December 1995, pp. 649–654 (1995)

    Google Scholar 

  17. Vincent, L.: Minimal path algorithms for the robust detection of linear features in images. In: Mathematical Morphology and its Applications to Image and Signal processing, Amsterdam. Computational Imaging and Vision, Proceedings for ISMM 1998, vol. 12, pp. 331–338. Kluwer, Dordrecht (1998)

    Google Scholar 

  18. Cohen, L., Deschamps, T.: Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Computer Methods in Biomechanics and Biomedical Engineering 10(4), 289–305 (2007)

    Article  Google Scholar 

  19. Verdú-Monedero, R., Angulo, J.: Spatially-variant directional mathematical morphology operators based on a diffused average squared gradient field. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 542–553. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Tankyevych, O., Talbot, H., Dokladal, P.: Curvilinear morpho-Hessian filter. In: IEEE ISBI, pp. 1011–1014 (2008)

    Google Scholar 

  21. Serra, J.: Image analysis and mathematical morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  22. Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image and Vision Computing 25(4), 395–404 (2007)

    Article  Google Scholar 

  23. Dokládal, P., Dokládalová, E.: Grey-scale morphology with spatially-variant rectangles in linear time. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 674–685. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Charif-Chefchaouni, M., Schonfeld, D.: Spatially-variant mathematical morphology. In: IEEE International Conference on Image Processing, 1994. Proceedings. ICIP 1994, November 1994, vol. 2, pp. 555–559 (1994)

    Google Scholar 

  25. Bouaynaya, N., Charif-Chefchaouni, M., Schonfeld, D.: Theoretical foundations of spatially-variant mathematical morphology part i: Binary images. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 823–836 (2008)

    Article  Google Scholar 

  26. Bouaynaya, N., Schonfeld, D.: Theoretical foundations of spatially-variant mathematical morphology part ii: Gray-level images. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 837–850 (2008)

    Article  Google Scholar 

  27. Agam, G., Armato, S.G., Wu, C.: Vessel tree reconstruction in thoracic CT scans with application to nodule detection. IEEE Transactions on Medical Imaging 24(4), 486–499 (2005)

    Article  Google Scholar 

  28. Antiga, L.: Generalizing vesselness with respect to dimensionality and shape. In: ISC/NA-MIC Workshop on Open Science at MICCAI (August 2007)

    Google Scholar 

  29. Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Transactions on Image Processing 2(2), 176–201 (1993)

    Article  MathSciNet  Google Scholar 

  30. Sato, Y., Westin, C.F., Bhalerao, A., Nakajima, S., Shiraga, S., Tamura, S., Kikinis, R.: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics 6(2), 160–180 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tankyevych, O., Talbot, H., Dokladál, P., Passat, N. (2009). Spatially-Variant Morpho-Hessian Filter: Efficient Implementation and Application. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03613-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03612-5

  • Online ISBN: 978-3-642-03613-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics