Skip to main content

On Mesh Editing, Manifold Learning, and Diffusion Wavelets

  • Conference paper
Book cover Mathematics of Surfaces XIII (Mathematics of Surfaces 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5654))

Included in the following conference series:

Abstract

We spell out a formal equivalence between the naive Laplacian editing and semi-supervised learning by bi-Laplacian Regularized Least Squares. This allows us to write the solution to Laplacian mesh editing in a ‘closed’ form, based on which we introduce the Generalized Linear Editing (GLE). GLE has both naive Laplacian editing and gradient based editing as special cases. GLE allows using diffusion wavelets for mesh editing. We present preliminary experiments, and shortly discuss connections to segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)

    Google Scholar 

  2. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. In: TOG(SIGGRAPH), 644–651 (2004)

    Google Scholar 

  3. Alexa, M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19(2-3), 105–114 (2003)

    MATH  Google Scholar 

  4. Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for mesh encoding. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, pp. 42–51 (2003)

    Google Scholar 

  5. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics (2007) (to appear)

    Google Scholar 

  6. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. TOG(SIGGRAPH) 22(3), 313–318 (2003)

    Google Scholar 

  7. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 179–188. ACM Press, New York (2004)

    Google Scholar 

  8. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. Comput. Graph. Forum 24(3), 601–609 (2005)

    Article  Google Scholar 

  9. Lipman, Y., Cohen-Or, D., Gal, R., Levin, D.: Volume and shape preservation via moving frame manipulation. ACM Trans. Graph. 26(1), 5 (2007)

    Article  Google Scholar 

  10. Sorkine, O.: Differential representations for mesh processing. Computer Graphics Forum 25(4), 789–807 (2006)

    Article  Google Scholar 

  11. Sheffer, A., Kraevoy, V.: Pyramid coordinates for morphing and deformation. In: 3DPVT 2004: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, Washington, DC, USA, pp. 68–75. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  12. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)

    Article  Google Scholar 

  13. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive surface modeling. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, Aire-la-Ville, Switzerland, Switzerland, Eurographics Association, pp. 11–20 (2006)

    Google Scholar 

  14. Lévy, B.: Laplace-Beltrami eigenfunctions: Towards an algorithm that understands geometry. In: Shape Modeling International (2006)

    Google Scholar 

  15. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum (Proceedings Eurographics) (2008)

    Google Scholar 

  16. Rong, G., Cao, Y., Guo, X.: Spectral mesh deformation. Vis. Comput. 24(7), 787–796 (2008)

    Article  Google Scholar 

  17. Volodine, T., Vanderstraeten, D., Roose, D.: Smoothing of meshes and point clouds using weighted geometry-aware bases. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS, vol. 4077, pp. 687–693. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Borrel, P., Rappoport, A.: Simple constrained deformations for geometric modeling and interactive design. ACM Trans. Graph. 13(2), 137–155 (1994)

    Article  MATH  Google Scholar 

  19. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Courses, p. 21. ACM, New York (2005)

    Google Scholar 

  20. Reuter, P., Tobor, I., Schlick, C., Dedieu, S.: Point-based modelling and rendering using radial basis functions. In: GRAPHITE 2003: Proceedings of the 1st international conference on Computer graphics and interactive techniques in Australasia and South East Asia, pp. 111–118. ACM, New York (2003)

    Google Scholar 

  21. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. Comput. Graph. Forum 24(3), 611–621 (2005)

    Article  Google Scholar 

  22. Mahadevan, S.: Adaptive mesh compression in 3D computer graphics using multiscale manifold learning. In: ICML 2007: Proceedings of the 24th international conference on Machine learning, pp. 585–592. ACM, New York (2007)

    Google Scholar 

  23. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Coifman, R.R.: Special issue on diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 3 (2006)

    Article  MathSciNet  Google Scholar 

  25. Belkin, M., Niyogi, P.: Semi-supervised learning on riemannian manifolds. Mach. Learn. 56(1-3), 209–239 (2004)

    Article  MATH  Google Scholar 

  26. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maggioni, M.: Diffusion wavelet code, http://www.math.duke.edu/~mauro/DWCode.zip

  28. Lee, T.Y., Lin, P.H., Yan, S.U., Lin, C.H.: Mesh decomposition using motion information from animation sequences: Animating geometrical models. Comput. Animat. Virtual Worlds 16(3-4), 519–529 (2005)

    Article  Google Scholar 

  29. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: SCA 2005: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 209–217. ACM Press, New York (2005)

    Chapter  Google Scholar 

  30. Günther, J., Friedrich, H., Wald, I., Seidel, H.P., Slusallek, P.: Ray tracing animated scenes using motion decomposition. Computer Graphics Forum 25(3), 517–525 (2006) (Proceedings of Eurographics)

    Article  Google Scholar 

  31. Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Symposium on Geometry Processing (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rustamov, R.M. (2009). On Mesh Editing, Manifold Learning, and Diffusion Wavelets. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03596-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03595-1

  • Online ISBN: 978-3-642-03596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics