Skip to main content

Two Step Time Discretization of Willmore Flow

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5654))

Abstract

Based on a natural approach for the time discretization of gradient flows a new time discretization for discrete Willmore flow of polygonal curves and triangulated surfaces is proposed. The approach is variational and takes into account an approximation of the L 2-distance between the surface at the current time step and the unknown surface at the new time step as well as a fully implicity approximation of the Willmore functional at the new time step. To evaluate the Willmore energy on the unknown surface of the next time step, we first ask for the solution of a inner, secondary variational problem describing a time step of mean curvature motion. The time discrete velocity deduced from the solution of the latter problem is regarded as an approximation of the mean curvature vector and enters the approximation of the actual Willmore functional. To solve the resulting nested variational problem in each time step numerically relaxation theory from PDE constraint optimization are taken into account. The approach is applied to polygonal curves and triangular surfaces and is independent of the co-dimension. Various numerical examples underline the stability of the new scheme, which enables time steps of the order of the spatial grid size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willmore, T.: Riemannian Geometry. Claredon Press, Oxford (1993)

    MATH  Google Scholar 

  2. Simonett, G.: The Willmore Flow near spheres. Diff. and Integral Eq. 14(8), 1005–1014 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differential Geom. 57(3), 409–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation and Depth. LNCS, vol. 662. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  5. Mumford, D.: Elastica and computer vision. In: Bajaj, C. (ed.) Algebraic Geometry and Its Applications, pp. 491–506. Springer, New York (1994)

    Chapter  Google Scholar 

  6. Yoshizawa, S., Belyaev, A.G.: Fair triangle mesh generation with discrete elastica. In: Proceedings of the Geometric Modeling and Processing; Theory and Applications (GMP 2002), Washington, DC, USA, pp. 119–123. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  7. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM Appl. Math. 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Polden, A.: Closed Curves of Least Total Curvature. SFB 382 Tübingen, Preprint 13 (1995)

    Google Scholar 

  9. Polden, A.: Curves and Surfaces of Least Total Curvature and Fourth-Order Flows. Dissertation, Universität Tübingen (1996)

    Google Scholar 

  10. Kuwert, E., Schätzle, R.: Removability of Point Singularities of Willmore Surfaces. Preprint SFB 611, Bonn (2002)

    Google Scholar 

  11. Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Comm. Anal. Geom. 10(5), 1228–1245 (2002) (electronic)

    MathSciNet  MATH  Google Scholar 

  12. Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in ℝn: existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245 (2002) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces and Free Boundaries 6(3), 361–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of graphs. Interfaces and Free Boundaries 8, 21–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comp. Phys. 222, 441–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bobenko, A., Schröder, P.: Discrete Willmore flow. In: SIGGRAPH (Courses). ACM Press, New York (2005)

    Google Scholar 

  17. Dziuk, G.: Computational parametric Willmore flow. Preprint Fakultät für Mathematik und Physik, Universität Freiburg 13-07 (2007)

    Google Scholar 

  18. Welch, W., Witkin, A.: Variational surface modeling. In: SIGGFRAPH Computer Graphics, vol. 26, pp. 157–166 (1992)

    Google Scholar 

  19. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. of SIGGRAPH 2000, New Orleans, USA, pp. 417–424 (2000)

    Google Scholar 

  20. Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting. In: IEEE Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 355–362 (2001)

    Google Scholar 

  21. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design 21(5), 427–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rane, S.D., Remus, J., Sapiro, G.: Wavelet-domain reconstruction of lost blocks in wireless image transmission and packet-switched networks. In: 2002 International Conference on Image Processing. Proceedings, September 22-25, vol. 1 (2002)

    Google Scholar 

  23. Xu, G., Pan, Q.: G1 surface modelling using fourth order geometric flows. Computer-Aided Design 38(4), 392–403 (2006)

    Article  Google Scholar 

  24. Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. 3, 253–271 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chambolle, A.: An algorithm for mean curvature motion. Interfaces and free Boundaries 6, 195–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bellettini, G., Caselles, V., Chambolle, A., Novaga, M.: Crystalline mean curvature flow of convex sets. Technical Report 7641, UMR CNRS (2004)

    Google Scholar 

  27. Chambolle, A., Novaga, M.: Convergence of an algorithm for anisotropic mean curvature motion. SIAM J. Math. Anal. 37, 1978–1987 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  30. Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn. Springer Series in Computational Mathematics, vol. 25. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Diewald, U., Morigi, S., Rumpf, M.: A cascadic geometric filtering approach to subdivision. Computer Aided Geometric Design 19, 675–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Deckelnick, K., Dziuk, G.: Error analysis for the elastic flow of parametrized curves. Preprint Fakultät für Mathematik und Physik, Universität Freiburg 14-07 (2007) (to appear in Math. Comp.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olischläger, N., Rumpf, M. (2009). Two Step Time Discretization of Willmore Flow. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03596-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03595-1

  • Online ISBN: 978-3-642-03596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics