Skip to main content

Recent Advances in Computational Conformal Geometry

  • Conference paper
Mathematics of Surfaces XIII (Mathematics of Surfaces 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5654))

Included in the following conference series:

Abstract

Computational conformal geometry focuses on developing the computational methodologies on discrete surfaces to discover conformal geometric invariants. In this work, we briefly summarize the recent developments for methods and related applications in computational conformal geometry. There are two major approaches, holomorphic differentials and curvature flow. The holomorphic differential method is a linear method, which is more efficient and robust to triangulations with lower quality. The curvature flow method is nonlinear and requires higher quality triangulations, but more flexible. The conformal geometric methods have been broadly applied in many engineering fields, such as computer graphics, vision, geometric modeling and medical imaging. The algorithms are robust for surfaces scanned from real life, general for surfaces with different topologies. The efficiency and efficacy of the algorithms are demonstrated by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henrici, P.: Applied and Computational Complex Analysis, Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions, vol. 3. Wiley Interscience, Hoboken (1993)

    MATH  Google Scholar 

  2. Henrici, P.: Applied and Computational Complex Analysis, Power Series Integration Conformal Mapping Location of Zero, vol. 1. Wiley Interscience, Hoboken (1988)

    MATH  Google Scholar 

  3. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Transactions on Graphics 23(3), 861–869 (2004)

    Article  Google Scholar 

  5. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: SIGGRAPH 2002, pp. 362–371 (2002)

    Google Scholar 

  7. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Computer Graphics Forum (Proc. Eurographics 2002) 21(3), 209–218 (2002)

    Article  Google Scholar 

  8. Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Transactions on Graphics 22(3), 358–363 (2003)

    Article  Google Scholar 

  10. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)

    Article  Google Scholar 

  11. Gu, X., Yau, S.T.: Global conformal parameterization. In: Symposium on Geometry Processing, pp. 127–137 (2003)

    Google Scholar 

  12. Mercat, C.: Discrete Riemann surfaces and the Ising model. Communications in Mathematical Physics 218(1), 177–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirani, A.N.: Discrete exterior calculus. PhD thesis, California Institute of Technology (2003)

    Google Scholar 

  14. Jin, M., Wang, Y., Yau, S.T., Gu, X.: Optimal global conformal surface parameterization. In: IEEE Visualization 2004, pp. 267–274 (2004)

    Google Scholar 

  15. Gortler, S.J., Gotsman, C., Thurston, D.: Discrete one-forms on meshes and applications to 3D mesh parameterization. Computer Aided Geometric Design 23(2), 83–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: Symposium on Geometry Processing, pp. 201–210 (2006)

    Google Scholar 

  17. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Graph. 30(6), 917–926 (2006)

    Article  Google Scholar 

  18. Desbrun, M.: Discrete differential forms and applications to surface tiling. In: SCG 2006: Proceedings of the twenty-second annual symposium on Computational geometry, p. 40. ACM, New York (2006)

    Chapter  Google Scholar 

  19. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, pp. 201–210 (2006)

    Google Scholar 

  20. Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.E.: Conformal virtual colon flattening. In: Symposium on Solid and Physical Modeling, pp. 85–93 (2006)

    Google Scholar 

  21. Wang, S., Wang, Y., Jin, M., Gu, X.D., Samaras, D.: Conformal geometry and its applications on 3d shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)

    Article  Google Scholar 

  22. Zeng, W., Zeng, Y., Wang, Y., Yin, X., Gu, X., Samaras, D.: 3d non-rigid surface matching and registration based on holomorphic differentials. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Gu, X., He, Y., Qin, H.: Manifold splines. Graphical Models 68(3), 237–254 (2006)

    Article  MATH  Google Scholar 

  24. Hamilton, R.S.: Three manifolds with positive Ricci curvature. Journal of Differential Geometry 17, 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hamilton, R.S.: The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math. Amer. Math. Soc. Providence, RI 71 (1988)

    Google Scholar 

  26. Thurston, W.P.: Geometry and Topology of Three-Manifolds. Lecture notes at Princeton university (1980)

    Google Scholar 

  27. Koebe, P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

    MATH  Google Scholar 

  28. Thurston, W.P.: The finite Riemann mapping theorem (1985)

    Google Scholar 

  29. Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. Journal of Differential Geometry 26(2), 349–360 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Colin de Verdière, Y.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104(3), 655–669 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Collins, C., Stephenson, K.: A circle packing algorithm. Computational Geometry: Theory and Applications 25, 233–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. Journal Differential Geometry 63(1), 97–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Transaction on Visualization and Computer Graphics (2008)

    Google Scholar 

  34. Bowers, P.L., Hurdal, M.K.: Planar conformal mapping of piecewise flat surfaces. In: Visualization and Mathematics III, pp. 3–34. Springer, Berlin (2003)

    Chapter  Google Scholar 

  35. Bobenko, A.I., Springborn, B.A.: Variational principles for circle patterns and Koebe’s theorem. Transactions of the American Mathematical Society 356, 659–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  37. Yamabe, H.: The Yamabe problem. Osaka Math. J. 12(1), 21–37 (1960)

    MathSciNet  Google Scholar 

  38. Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22(2), 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  39. Aubin, T.: Équations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  40. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differential Geom. 20(2), 479–495 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lee, J.M., Parker, T.H.: The Yamabe problem. Bulletin of the American Mathematical Society 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Luo, F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Springborn, B., Schröoder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Transactions on Graphics 27(3), 1–11 (2008)

    Article  Google Scholar 

  44. Computational conformal geometry library 1.1, http://www.cs.sunysb.edu/~manifold/CCGL1.1/

  45. Zeng, W., Jin, M., Luo, F., Gu, X.: Computing canonical homotopy class representative using hyperbolic structure. In: IEEE International Conference on Shape Modeling and Applications, SMI 2009 (2009)

    Google Scholar 

  46. Thurston, W.P.: Geometry and Topology of Three-Manifolds. Princeton lecture notes (1976)

    Google Scholar 

  47. Luo, F., Gu, X., Dai, J.: Variational Principles for Discrete Surfaces. Advanced Lectures in Mathematics. High Education Press and International Press (2007)

    Google Scholar 

  48. Zeng, W., Luo, F., Yau, S.T., Gu, X.D.: Surface quasi-conformal mapping by solving Beltrami equations. In: IMA: 13th International Conference on The Mathematics of Surfaces (2009)

    Google Scholar 

  49. Zeng, W., Lui, L.M., Gu, X., Yau, S.T.: Shape analysis by conformal modules. In: Methods and Applications of Analysis (2009)

    Google Scholar 

  50. Jin, M., Zeng, W., Ning, D., Gu, X.: Computing Fenchel-Nielsen coordinates in teichmuller shape space. In: IEEE International Conference on Shape Modeling and Applications, SMI 2009 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, X.D., Luo, F., Yau, S.T. (2009). Recent Advances in Computational Conformal Geometry. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03596-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03595-1

  • Online ISBN: 978-3-642-03596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics