Skip to main content

Electrostatic Force Microscopy and Kelvin Force Microscopy as a Probe of the Electrostatic and Electronic Properties of Carbon Nanotubes

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology

Part of the book series: NanoScience and Technology ((NANO))

Summary

This chapter addresses recent experimental studies on carbon nanotubes and nanotube devices using electrical techniques derived from atomic force microscopy. Electrostatic force microscopy (EFM), Kelvin force microscope (KFM), and their variants are introduced. We show how EFM-related techniques are used to image the electrostatic and electronic properties of individual carbon nanotubes on insulators, to manipulate their charge state, and to measure field-emission and band-structure properties of individual nanotubes. We then describe how KFM-related techniques can bring insight into the operation of electronic devices based on carbon nanotubes. We focus here on the case of field effect transistors, and describe how KFM techniques can be used to study charge transfers at the nanotube–contact interfaces, to assess the transport properties in carbon nanotubes, and, finally, to characterize carbon nanotube devices under operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature 354(6348) 56 (1991)

    Google Scholar 

  2. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393 49 (1998)

    Article  CAS  ADS  Google Scholar 

  3. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Appl. Phys. Lett. 73 2447 (1998)

    Article  CAS  ADS  Google Scholar 

  4. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49 57 (1982)

    Article  ADS  Google Scholar 

  5. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56 930 (1986)

    Article  PubMed  ADS  Google Scholar 

  6. Y. Martin, D.W. Abraham, H.K. Wickramsinghe, Appl. Phys. Lett. 52 1103 (1988)

    Article  ADS  Google Scholar 

  7. J.E. Stern, B.D. Terris, H.J. Mamin, D. Rugar, Appl. Phys. Lett. 53 2717 (1988)

    Article  ADS  Google Scholar 

  8. B.D. Terris, J.E. Stern, D. Rugar, H.J. Mamin, Phys. Rev. Lett. 63 2669 (1989)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. C. Schönenberger, S.F. Alvarado, Phys. Rev. Lett. 65 3162 (1990)

    Article  PubMed  ADS  Google Scholar 

  10. M.N. Nonnenmacher, M.P. O’Boyle, H.K. Wickramsinghe, Appl. Phys. Lett. 58 2921 (1991)

    Article  ADS  Google Scholar 

  11. T.D. Krauss, L.E. Brus, Phys. Rev. Lett. 83 4840 (1999)

    Article  CAS  ADS  Google Scholar 

  12. M. Zdrojek, T. Mélin, H. Diesinger, D. Stiévenard, W. Gebicki, L. Adamowicz, J. Appl. Phys. 100 114326 (2006)

    Article  ADS  CAS  Google Scholar 

  13. T. Mélin, H. Diesinger, D. Deresmes, D. Stiévenard, Phys. Rev. Lett. 92 166101 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  14. A. Bachtold, M.S. Fuhrer, S. Plyasunov, M. Forero, E.H. Anderson, A. Zettl, L. P. McEuen, Phys. Rev. Lett. 84 26 (2000)

    Article  ADS  Google Scholar 

  15. H.O. Jacobs, P. Leuchtmann, O.J. Homan, A. Stemmer, J. Appl. Phys. 84 1168 (1998)

    Article  CAS  ADS  Google Scholar 

  16. S.C. Chin, Y.C. Chang, C.C. Hsu, W.H. Lin, C.I. Wu, C.S. Chang, T.T. Tsong, W.Y. Woon, L.T. Lin, H.J. Tao, Nanotechnology 19 325703 (2008)

    Article  ADS  CAS  Google Scholar 

  17. S.B. Arnason, A.G. Rinzler, Q. Hudspeth, A.F. Hebard, Appl. Phys. Lett. 75 2842 (1999)

    Article  CAS  ADS  Google Scholar 

  18. C. Maeda, S. Kishimoto, T. Mizutani, T. Sugai, H. Shinohara, Jpn. J. Appl. Phys. 42 2449 (2003)

    Article  CAS  ADS  Google Scholar 

  19. M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L.P. Kouwenhoven, M.W. Wu, L.L. Sohn, Nano Lett. 2(3) 187 (2002)

    Google Scholar 

  20. C. Staii, A.T. Johnson, J. Nicholas, Nano Lett. 4(5) 859 (2004)

    Google Scholar 

  21. T.S. Jespersen, J. Nygård, Nano Lett. 5(9) 1838 (2005)

    Google Scholar 

  22. N. Geblinger, A. Ismach, E. Joselevich, Nat. Nanotechnol. 3 195 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. T.S. Jespersen, J. Nygård, Appl. Phys. Lett. 90, 183108 (2007)

    Article  ADS  CAS  Google Scholar 

  24. T. Heim, T. Mélin, D. Deresmes, D. Vuillaume, Appl. Phys. Lett. 85 2637 (2004)

    Article  CAS  ADS  Google Scholar 

  25. M. Zdrojek, T. Mélin, B. Jouault, M. Wozniak, A. Huczko, W. Gebicki, D. Stiévenard L. Adamowicz, Appl. Phys. Lett. 86 213114 (2005)

    Google Scholar 

  26. M. Paillet, P. Poncharal, A. Zahab, Phys. Rev. Lett. 94 186801 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. M. Zdrojek, T. Mélin, H. Diesinger, W. Gebicki, D. Stiévenard, L. Adamowicz, Phys. Rev. Lett. 96 039703 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  28. M. Paillet, P. Poncharal, A. Zahab, Phys. Rev. Lett. 96 039704 (2006)

    Article  ADS  CAS  Google Scholar 

  29. J. Lambert, G. Loubens, C. Guthmann, M. Saint-Jean, T. Mélin, Phys. Rev. B. 71 155418 (2005)

    Article  ADS  CAS  Google Scholar 

  30. M. Zdrojek, T. Heim, D. Brunel, A. Mayer, T. Mélin, Phys. Rev. B 77 033404 (2008)

    Google Scholar 

  31. T. Mélin, H. Diesinger, D. Deresmes, D. Stiévenard, Phys. Rev. B 69 035321 (2004)

    Article  ADS  CAS  Google Scholar 

  32. P. Keblinski, S.K. Nayak, P. Zapol, P.M. Ajayan, Phys. Rev. Lett. 89 255503 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Z. Wang, M. Zdrojek, T. Mélin, M. Devel, Phys. Rev. B 78 085425 (2008)

    Article  ADS  CAS  Google Scholar 

  34. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391 59 (1998)

    Article  CAS  ADS  Google Scholar 

  35. A.P.M. Barboza, A.P. Gomez, B.S. Archanjo, P.T. Araujo, A. Jorio, A.S. Ferlauto, M.S.C. Mazzoni, H. Chacham, B.R.A. Neves, Phys. Rev. Lett. 100 256804 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  36. J. Heo, M. Bockrath, Nano Lett. 5 853 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  37. W. Lu, Y. Xiong, A. Hassanien, W. Zhao, M. Zheng, L. Chen, Nano Lett. 9, 1664 (2009)

    ADS  Google Scholar 

  38. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424 654 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  39. X. Cui, M. Freitag, R. Martel, L. Brus, P.h. Avouris, Nano Lett. 3 783 (2003)

    Google Scholar 

  40. V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Nano Lett. 1 453 (2001)

    Article  CAS  ADS  Google Scholar 

  41. V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Appl. Phys. Lett. 80 2773 (2002)

    Article  CAS  ADS  Google Scholar 

  42. M. Shiraishi, K. Takebe, K. Matsuoka, K. Saito, N. Toda, J. Appl. Phys. 101 014311 (2007)

    Article  ADS  CAS  Google Scholar 

  43. S. Kalinin, D.B. Bonnell, M. Freitag, A.T. Johnson, Appl. Phys. Lett. 81 754 (2002)

    Article  CAS  ADS  Google Scholar 

  44. Y. Miyato, K. Kobayashi, K. Matsushige, H. Yamada, Jpn. J. Appl. Phys. 44 1633 (2005)

    Article  CAS  ADS  Google Scholar 

  45. Y. Miyato, K. Kobayashi, K. Matsushige, H. Yamada, Nanotechnology 18 084008 (2007)

    Article  ADS  CAS  Google Scholar 

  46. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, P. Avouris, Phys. Rev. Lett. 89 126801 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  47. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P.h. Avouris, Phys. Rev. Lett. 89 106801 (2002)

    Google Scholar 

  48. D. Brunel, D. Deresmes, T. Mélin, Appl. Phys. Lett. 94 223508 (2009)

    Article  ADS  CAS  Google Scholar 

  49. M. Radosavljevic, M. Freitag, K.V. Thadani, A.T. Johnson, Nano Lett. 2 761 (2002)

    Article  CAS  ADS  Google Scholar 

  50. B. Babic, M. Iqbal, C. Schönenberger, Nanotechnology 14 327 (2003)

    Article  CAS  ADS  Google Scholar 

  51. T. Umesaka, H. Ohnaka, Y. Ohno, S. Kishimoto, K. Maezawa, T. Mizutani, Jpn. J. Appl. Phys. 46 2496 (2007)

    Article  CAS  ADS  Google Scholar 

  52. W. Kim, A. Javey, O. Vermes, Q. Wang, Y. Li, H. Dai, Nano Lett. 3 193 (2003)

    Article  CAS  ADS  Google Scholar 

  53. M.S. Fuhrer, B.M. Kim, T. Durkop, T. Brintlinger, Nano Lett. 2 755 (2002)

    Article  CAS  ADS  Google Scholar 

  54. A. Stirling, A. Pasquarello, J.C. Charlier, R. Car, Phys. Rev. Lett. 85 2773 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge fruitful discussions with L. Adamowicz, H. Diesinger, V. Derycke, D. Deresmes, A. Mayer, Z. Wang, and M. Devel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Mélin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mélin, T., Zdrojek, M., Brunel, D. (2010). Electrostatic Force Microscopy and Kelvin Force Microscopy as a Probe of the Electrostatic and Electronic Properties of Carbon Nanotubes. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03535-7_4

Download citation

Publish with us

Policies and ethics