Skip to main content

Colossal Permittivity in Advanced Functional Heterogeneous Materials: The Relevance of the Local Measurements at Submicron Scale

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology

Part of the book series: NanoScience and Technology ((NANO))

  • 2211 Accesses

Summary

Recently, giant dielectric permittivities (ɛ ∼ 104) have been found in several nonferroelectric materials such as CaCu3Ti4O12 (CCTO) (Subramanian et al., J. Solid State Chem. 151:323, 2000; Homes et al., Science 293:673, 2001), doped-NiO (Wu et al., Phys. Rev. Lett. 89:217601, 2002) systems (Li x Ti y Ni1 − x − y O, Li x Si y Ni1 − x − y O, Ki x Ti y Ni1 − x − y O), CuO, (Lin et al., Phys. Rev. B 72:014103, 2005; Sarkar et al., App. Phys. Lett. 92:142901, 2008) etc., and most important, the high ɛ values of these materials are almost independent over a wide range of temperature. This is one of the most intriguing features for their implementations in microelectronics devices, and as a consequence, these materials have been subjected to extensive research. Here, an introduction to such materials and to the methods for their dielectric characterization is given. So far, the crucial question is whether the large dielectric response is an intrinsic property of new class of crystals or an extrinsic property originated by a combination of the structural properties and other features such as defects and inhomogeneities. Preliminary, this peculiar dielectric behavior has been explained in powder ceramics by the internal barrier layer capacitor (IBLC) model, that is the presence of semiconducting domains surrounded by thin insulating regions within the crystal microstructure. It has been considered the most appropriate model and it has been generally accepted to explain the giant response of these materials. However, it could not be transferred to single crystals and thin films. In this scenario, scanning probe-based methods (like STM, KPFM, C-AFM, SIM etc) represent the most powerful instrument to understand the colossal permittivity-related physical phenomena, by investigations at nanoscale, clarifying the local effects responsible of the rising of macroscopic giant dielectric responses. Scanning probe microscopy investigations showed the relevance of inhomogeneity within single crystal, polycrystalline ceramics, and thin films. In particular, they are powerful tools to point out the presence of few nanometer wide internal barrier layers and of electrical domains, which are not recognisable with standard macroscopic electric characterization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000).

    Article  CAS  ADS  Google Scholar 

  2. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002).

    Article  CAS  Google Scholar 

  4. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004).

    Article  ADS  CAS  Google Scholar 

  5. L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B 65, 214112 (2002).

    Article  ADS  CAS  Google Scholar 

  6. Friedrich Kremer, Andreas Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, Heidelberg, New York, 2003); ISBN 3-540-43407-0.

    Google Scholar 

  7. C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization, Vol II. Dielectrics in Time-Dependent Fields (Elsevier, Amsterdam, Oxford, New York, 1978).

    Google Scholar 

  8. R.W. Wagner, Arch. Elektrotech. 2, 371 (1914).

    Article  Google Scholar 

  9. R.W. Sillars, J. Inst. Elect. Eng. 80, 378 (1937).

    Google Scholar 

  10. H. Boettger, V.V. Bryksin, Hopping conducting in solids (Akademie, Berlin, 1985).

    Google Scholar 

  11. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941).

    Article  CAS  ADS  Google Scholar 

  12. E. Warburg, Ann. Phys. 6, 125 (1901).

    Article  CAS  Google Scholar 

  13. H. Fricke, Phys. Rev. 26, 678 (1925).

    Article  ADS  Google Scholar 

  14. S.H. Liu, Phys. Rev. Lett. 55, 529 (1985).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006).

    Article  ADS  CAS  Google Scholar 

  16. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989).

    Article  CAS  ADS  Google Scholar 

  17. D.R. Clarke, J. Amer, Ceram. Soc. 82, 485 (1999).

    Article  CAS  Google Scholar 

  18. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002).

    Article  CAS  ADS  Google Scholar 

  19. R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005).

    Article  ADS  CAS  Google Scholar 

  20. S.Y. Chung, I.L.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. F. Greuter G. Blatter, Semicond. Sci. Technol. 5, 111 (1990).

    Google Scholar 

  22. C.C. Homes, T. Vogt, S.M. Shapiro, W. Wakimoto, M.A. Subramanian, A. Ramirez, Phys. Rev. B 67, 092106 (2003).

    Article  ADS  CAS  Google Scholar 

  23. Shao S.F., Zhang J.L., Zheng P., Zhang W.L., Wang C.L. J. Appl. Phys. 99, 084106 (2006).

    Article  CAS  Google Scholar 

  24. Sinclair D.C., Adams T.B., Morrison F.D., West A.R. Appl. Phys. Lett. 80, 2153 (2002).

    Article  CAS  ADS  Google Scholar 

  25. Cohen M.H., Neaton J.B., He L., Vanderbilt D. J. Appl. Phys. 94, 3299 (2003).

    Article  CAS  Google Scholar 

  26. R.H. Boyd, in Methods of Experimental Physics, vol. 16 (Academic, Orlando FL, 1980).

    Google Scholar 

  27. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976).

    Article  CAS  Google Scholar 

  28. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Appl. Phys. Lett. 91, 022910 (2007).

    Article  ADS  CAS  Google Scholar 

  29. J. Wu, C.-W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  30. C. Wang, H.J. Zhang, P.M. He, G.H. Cao, Appl. Phys. Lett. 91, 052910 (2007).

    Article  ADS  CAS  Google Scholar 

  31. V. Raineri, P. Fiorenza, R. Lo Nigro, D.C. Sinclair, Solid State Phenom. 131–133, 443 (2008).

    Article  Google Scholar 

  32. K. Jana, S. Sarkar, B.K. Chaudhuri, Appl. Phys. Lett. 88, 182901 (2006).

    Article  ADS  CAS  Google Scholar 

  33. S. Sarkar, P.K. Jana, B.K. Chaudhuri, H. Sakata, Appl. Phys. Lett. 89, 212905 (2006).

    Article  ADS  CAS  Google Scholar 

  34. X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Phys. Rev. Lett. 85, 5170 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. J. Tersoff, D.R. Hamann, Phys. Rev. B 31, 805 (1985).

    Article  CAS  ADS  Google Scholar 

  36. N.D. Lang, Phys. Rev. B 34, R5947 (1986).

    Article  ADS  Google Scholar 

  37. R.M. Feenstra, J.A. Stroscio, A.P. Fein, Surf. Sci. 181, 295 (1987).

    Article  CAS  ADS  Google Scholar 

  38. R.M. Feenstra, J.Y. Lee, M.H. Kang, G. Mayer, K.H. Rieder, Phys. Rev. B 73, 035310 (2006).

    Article  ADS  CAS  Google Scholar 

  39. P. Mårtensson, R.M. Feenstra, Phys. Rev. B 39, 7744 (1989).

    Article  ADS  Google Scholar 

  40. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Esks, J. Westerink, C.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988).

    Article  CAS  ADS  Google Scholar 

  41. I.-D. Kim, A. Rothschild, H.L. Tuller, Appl. Phys. Lett. 88, 072902 (2006).

    Article  ADS  CAS  Google Scholar 

  42. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Applications, 2nd edn. (Wiley, New York, 2003).

    Google Scholar 

  43. B. Bochu, et al. J. Solid State Chem. 29, 291 (in French) (1979).

    Google Scholar 

  44. L. He, J.B. Neaton, D. Vanderbilt, M.H. Cohen, Phys. Rev. B 67, 012103 (2003).

    Article  ADS  CAS  Google Scholar 

  45. Chen, L. et al. Appl. Phys. Lett. 82, 2317 (2003).

    Article  CAS  ADS  Google Scholar 

  46. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Article  ADS  Google Scholar 

  47. B.D. Huey, D. Lisjak, D.A. Bonnell, J. Am. Ceram. Soc. 82, 1941 (1999).

    Article  CAS  Google Scholar 

  48. S.-Y. Chung, Y.-M. Chiang. Electrochem. Solid State Lett. 6, A278–A281 (2003).

    Article  CAS  Google Scholar 

  49. J. Wu, C.-W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  50. B. Benner, P. Lunkenheimer, M. Schetter, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Appl. Phys. 96, 4400 (2004).

    Article  ADS  CAS  Google Scholar 

  51. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002).

    Article  ADS  CAS  Google Scholar 

  52. P. Fiorenza, R. Lo Nigro, V. Raineri, R.G. Toro, M.R. Catalano, J. Appl. Phys. 102, 116103 (2007).

    Article  ADS  CAS  Google Scholar 

  53. P. Fiorenza, R. Lo Nigro, C. Bongiorno, V. Raineri, M.C. Ferarrelli, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 92, 182907 (2008).

    Article  ADS  CAS  Google Scholar 

  54. P. Fiorenza, R. Lo Nigro, S. Sciuto, P. Delugas, V. Raineri, R.G. Toro, M.R. Catalano, G. Malandrino, J. Appl. Phys. 105, 061634 (2009).

    Article  ADS  CAS  Google Scholar 

  55. G. Zang, J. Zhang1, P. Zheng, J. Wang, C. Wang, J. Phys. D 38, 1824 (2005).

    Google Scholar 

  56. T.–T. Fang, C.P. Liu, Chem. Mater. 17, 5167 (2005).

    Google Scholar 

  57. Y. Lin, L. Jiang, R. Zhao, C.-W. Nan, Phys. Rev. B 72, 014103 (2005).

    Article  ADS  CAS  Google Scholar 

  58. Sudipta Sarkar, Pradip Kumar Jana, B.K. Chaudhuri, App. Phys. Lett. 92, 142901 (2008).

    Google Scholar 

  59. S. Sarkar, P.K. Jana, B.K. Chaudhuri, H. Sakata, Appl. Phys. Lett. 89, 212905 (2006).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Fiorenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiorenza, P., Nigro, R.L., Raineri, V. (2010). Colossal Permittivity in Advanced Functional Heterogeneous Materials: The Relevance of the Local Measurements at Submicron Scale. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03535-7_17

Download citation

Publish with us

Policies and ethics