Skip to main content

Mechanical Properties of One-Dimensional Nanostructures

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology

Part of the book series: NanoScience and Technology ((NANO))

Summary

The elastic mechanical properties of one-dimensional nanostructures are considered, with an emphasis on the use of contact-resonance atomic force microscopy methods to determine elastic moduli. Various methods used to determine elastic moduli of one-dimensional nanostructures are reviewed before detailed consideration of the experimental and analytical methods used in contact-resonance atomic force microscopy As direct applications of contact-resonance atomic force microscopy on one-dimensional nanostructures, two measurement examples are shown here, for ZnO and Te nanowires. The variations of the elastic moduli of ZnO and Te nanowires with nanowire diameter are presented and interpreted in terms of core–shell models of nanowire structure. Based on combined theoretical, atomistic simulation, and experimental results, the importance of accurate and precise methods for measuring the mechanical properties of nanostructures, and how those methods need to be adjusted for one-dimensional nanostructures, is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Dresselhaus, Carbon nanotubes-Introduction. J. Mater. Res. 13, 2355–2356 (1998)

    Google Scholar 

  2. C.R. Welch, W.F. Marcuson, I. Adiguzel,Will supermolecules and supercomputers lead to super construction materials? Civil Eng. 78, 42–52 (2008)

    Google Scholar 

  3. O. Lourie, H.D. Wagner, Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 13, 2418–2422 (1998)

    Article  CAS  ADS  Google Scholar 

  4. R. Tenne, P.M. Ajayan, Z.L. Wang, Y. Li, P. Yang, Foreword. J. Mater. Res. 21, 2709–2710 (2006)

    Article  CAS  ADS  Google Scholar 

  5. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. L. Gao, Z.L. Wang, Z. Bai, W.A. de Heer, L. Dai, M. Gao, Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Z.L. Wang, Z.R. Dai, R.P. Gao, Z.G. Bai, J.L. Gole, Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties. Appl. Phys. Lett. 77, 3349–3351 (2000)

    Article  CAS  ADS  Google Scholar 

  8. X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82, 4806–4808 (2003)

    Article  CAS  ADS  Google Scholar 

  9. P. Jaroenapibal, D.E. Luzzi, S. Evoya, S. Arepalli, Transmission-electron-microscopic studies of mechanical properties of single-walled carbon nanotube bundles. Appl. Phys. Lett. 85, 4328–4300 (2004)

    Article  CAS  ADS  Google Scholar 

  10. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  11. X.L. Wei, Y. Liu, Q. Chen, M.S. Wang, L.M. Peng, The very low shear modulus of multi-walled carbon nanotubes determined simultaneously with the axial Young’s modulus via in situ experiments. Adv. Funct. Mater. 18, 1555–1562 (2008)

    Article  CAS  Google Scholar 

  12. D.A. Dikin, X. Chen, W. Ding, G. Wagner, R.S. Ruoff, Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation. J. Appl. Phys. 93, 226–230 (2003)

    Article  CAS  ADS  Google Scholar 

  13. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Y. Zhu, H.D. Espinosa, An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. USA 102, 14503–14508 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. H.D. Espinosa, Y. Zhu, N. Moldovan, Design and operation of a MEMS-based material testing system for nanomechanical characterization. J. Microelectromech. Syst. 16, 1219–1231 (2007)

    Article  Google Scholar 

  16. Z.W. Pan, S.S. Xie, L. Lu, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, D.L. Zhang, Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 74, 3152–3154 (1999)

    Article  CAS  ADS  Google Scholar 

  17. S. Hoffmann, F. Östlund, J. Michler, H.J. Fan, M. Zacharias, S.H. Christiansen, C. Ballif, Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 18, 205503 (2007)

    Article  ADS  CAS  Google Scholar 

  18. R. Agrawal, B. Peng, E.E. Gdoutos, H.D. Espinosa, Elasticity size effects in ZnO nanowires – a combined experimental-computational approach. Nano Lett. 8, 3668–3674 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  19. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stöckli, K. MĂ©tĂ©nier, S. Bonnamy, F. BĂ©guin, N.A. Burnham, L. ForrĂ³, Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161–165 (1999)

    Article  CAS  Google Scholar 

  20. A. Kis, D. Mihailovic, M. Remskar, A. Mrzel, A. Jesih, I. Piwonski, A.J. Kulik, W. Benoit, L. ForrĂ³, Shear and Young’s moduli for MoS2 nanotube ropes. Adv. Mater. 15, 733–736 (2003)

    Article  CAS  Google Scholar 

  21. B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. H. Ni, X. Li, H. Gao, Elastic modulus of amorphous SiO2 nanowires. Appl. Phys. Lett. 88, 043108 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Q. Xiong, N. Duarte, S. Tadigadapa, P.C. Eklund, Force-deflection spectroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett. 6, 1904–1909 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  24. W. Mai, Z.L. Wang, Quantifying the elastic deformation behavior of bridged nanobelts. Appl. Phys. Lett. 89, 073112 (2006)

    Article  ADS  CAS  Google Scholar 

  25. L.T. Ngo, D. Almécija, J.E. Sader, B. Daly, N. Petkov, J.D. Holmes, D. Erts, J.J. Boland, Ultimate-strength Germanium nanowires. Nano Lett. 6, 2964–2968 (2006)

    CAS  Google Scholar 

  26. B. Wu, A. Heidelberg, J.J. Boland, J.E. Sader, X. Sun, Y. Li, Microstructure-hardened silver nanowires. Nano Lett. 6, 468–472 (2006)

    CAS  Google Scholar 

  27. Y. Chen, I. Stevenson, R. Pouy, L. Wang, D.M. McIlroy, T. Pounds, M.G. Norton, D.E. Aston, Mechanical elasticity of vapour-liquid-solid grown GaN nanowires. Nanotechnology 18, 135708 (2007)

    Article  ADS  Google Scholar 

  28. E.P.S. Tan, Y. Zhu, T. Yu, L. Dai, C.H. Sow, V.B.C. Tan, C.T. Lim, Crystalinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112 (2007)

    Article  ADS  CAS  Google Scholar 

  29. H. Zhang, J. Tang, L. Zhang, B. An, L.C. Qin, Atomic force microscopy measurement of the Young’s modulus and hardness of single LaB6 nanowires. Appl. Phys. Lett. 92, 173121 (2008)

    Article  ADS  CAS  Google Scholar 

  30. B. Wen, J.E. Sader, J.J. Boland, Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 101, 175502 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  31. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  CAS  Google Scholar 

  32. J. Song, X. Wang, E. Riedo, Z.L. Wang, Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Y.L. Chueh, L.J. Chou, J. Song, Z.L. Wang, Mechanical and magnetic properties of Ni-doped metallic TaSi2 nanowires. Nanotechnology 18, 145604 (2007)

    Article  ADS  CAS  Google Scholar 

  34. X. Li, H. Gao, C.J. Murphy, K.K. Caswell, Nanoindentation of silver nanowires. Nano Lett. 3, 1495–1498 (2003)

    Article  CAS  Google Scholar 

  35. G. Feng, W.D. Nix, Y. Yoon, C.J. Lee, A study of the mechanical properties of nanowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006)

    Article  ADS  CAS  Google Scholar 

  36. X. Li, X. Wang, Q. Xiong, P.C. Eklund, Mechanical properties of ZnS nanobelts. Nano Lett. 5, 1982–1986 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  37. H. Ni, X. Li, Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindnetation techniques. Nanotechnology 17, 3591–3597 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  38. X. Li, P. Nardi, C.W. Baek, J.M. Kim, Y.K. Kim, Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope. J. Micromech. Microeng. 15, 551–556 (2005)

    Article  CAS  ADS  Google Scholar 

  39. S.J. Young, L.W. Ji, S.J. Chang, T.H. Fang, T.J. Hsueh, T.H. Meen, I.C. Chen, Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO:Ga/glass templates. Nanotechnology 18, 225603 (2007)

    Article  ADS  CAS  Google Scholar 

  40. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, B. Nysten, Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  ADS  CAS  Google Scholar 

  41. G. Stan, C.V. Ciobanu, P.M. Parthangal, R.F. Cook, Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 7, 3691–3697 (2007)

    Article  CAS  ADS  Google Scholar 

  42. Y. Zheng, R.E. Geer, K. Dovidenko, M. Kopycinska-MĂ¼ller, D.C. Hurley, Quantitative nanoscale modulus measurements and elastic imaging of SnO2 nanobelts. J. Appl. Phys. 100, 124308 (2006)

    Article  ADS  CAS  Google Scholar 

  43. L. Muthaswami, Y. Zheng, R. Vajtai, G. Shehkawat, P. Ajayan, R.E. Geer, Variation of radial elasticity in multiwalled carbon nanotubes. Nano Lett. 7, 3891–3894 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. G. Stan, S. Krylyuk, A.V. Davydov, M. Vaudin, L.A. Bendersky, R.F. Cook, Surface effects on the elastic modulus of Te nanowires. Appl. Phys. Lett. 92, 241908 (2008)

    Article  ADS  CAS  Google Scholar 

  45. G. Stan, C.V. Ciobanu, T.P. Thayer, G.T. Wang, J.R. Creighton, K.P. Purushotham, L.A. Bendersky, R.F. Cook, Elastic modulus of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy. Nanotechnology 20, 035706 (2009)

    Article  CAS  Google Scholar 

  46. G.Y. Jing, H.L. Duan, X.M. Sun, Z.S. Zhang, J. Xu, Y.D. Li, J.X. Wang, D.P. Yu, Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006)

    Article  ADS  CAS  Google Scholar 

  47. J.M. Gere, S.P. Timoshenko, Mechanics of Materials, 2nd edn. (PWS-KENT, Boston, MA, 1984)

    Google Scholar 

  48. V. Sazonova, Y. Yaish, H. ĂœstĂ¼nel, D. Roundy, T.A. Arias, P.L. McEuen, A tunable carbon nanotube electromechanical oscillator. Nature (London) 431, 284–287 (2004)

    Article  CAS  ADS  Google Scholar 

  49. D. Garcia-Sanchez, A. San Paulo, M.J. Esplandiu, F. Perez-Murano, L. ForrĂ³, A. Aguasca, A. Bachtold, Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99, 085501 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  50. D.J. Zeng, Q.S. Zheng, Resonant frequency-based method for measuring the Young’s modulus of nanowires. Phys. Rev. B 76, 075417 (2007)

    Article  ADS  CAS  Google Scholar 

  51. P.E. Marszalek, W.J. Greenleaf, H. Li, A.F. Oberhauser, J.M. Fernandez, Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc. Natl. Acad. Sci. USA 97, 6282–6286 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  52. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. ForrĂ³, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  CAS  ADS  Google Scholar 

  53. S. Hoffmann, I. Utke, B. Moser, J. Michler, S.H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gösele, C. Ballif, Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6, 622–625 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  54. S.X. Mao, M. Zhao, Z.L. Wang, Nanoscale mechanical behavior of individual semiconducting nanobelts. Appl. Phys. Lett. 83, 993–995 (2003)

    Article  CAS  ADS  Google Scholar 

  55. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  ADS  Google Scholar 

  56. M.F. Yu, T. Kowalewski, R.S. Ruoff, Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys. Rev. Lett. 85, 1456–1459 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  57. L.W. Ji, S.J. Young, T.H. Fang, C.H. Liu, Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl. Phys. Lett. 90, 033109 (2007)

    Article  ADS  CAS  Google Scholar 

  58. U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. (1996) Rev. Sci. Instrum. 67, 3281–3293 (1996)

    Google Scholar 

  59. K. Yamanaka, S. Nakano, Ultrasonic atomic force microscopy with overtone excitation of cantilever. Jpn. J. Appl. Phys. 35, 3787–3792 (1996)

    Article  CAS  ADS  Google Scholar 

  60. K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–180 (1994)

    Article  CAS  ADS  Google Scholar 

  61. M.T. Cuberes, H.E. Assender, G.A.D. Briggs, O.K. Kolosov, Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J. Phys. D: Appl. Phys. 33, 2347–2355 (2000)

    Article  CAS  ADS  Google Scholar 

  62. T. Drobek, R.W. Stark, W.M. Heckl, Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: Passive overtone microscopy. Phys. Rev. B 64, 045401 (2001)

    Article  ADS  CAS  Google Scholar 

  63. O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nature Nanotech. 2, 507–514 (2007)

    Article  Google Scholar 

  64. U. Rabe, Atomic force acoustic microscopy, in Applied Scanning Probe Methods II, ed. by B. Bhushan, H. Fuchs (Springer, Berlin Heidelberg New York, 2006), pp. 37–90

    Chapter  Google Scholar 

  65. D.C. Hurley, Contact resonance force microscopy techniques for nanomechanical measurements, in Applied Scanning Probe Methods XI., ed. by B. Bhushan, H. Fuchs (Springer, Berlin Heidelberg NewYork, 2009), pp. 97–138

    Chapter  Google Scholar 

  66. U. Rabe, M. Kopycinska, S. Hirsekorn, J. Muñoz Saldaña, G.A. Schneider, W. Arnold, High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J. Phys. D: Appl. Phys. 35, 2621–2635 (2002)

    Article  CAS  ADS  Google Scholar 

  67. M. Kopycinska-MĂ¼ller, R.H. Geiss, J. MĂ¼ller, D.C. Hurley, Elastic-property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology 16:703–709 (2005)

    Article  ADS  CAS  Google Scholar 

  68. D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, V. Sessa, A. Fiori, E. Tamburri, M.L. Terranova, Local indentation modulus characterization of diamondlike carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique. Appl. Phys. Lett. 88, 121910 (2006)

    Article  ADS  CAS  Google Scholar 

  69. D.C. Hurley, M. Kopycinska-MĂ¼ller, A.B. Kos, R.H. Geiss, Quantitative elastic-property measurements at the nanoscale with atomic force acoustic microscopy. Adv. Eng. Mater. 7, 713–718 (2005)

    Article  CAS  Google Scholar 

  70. M. Prasad, M. Kopycinska, U. Rabe, W. Arnold, Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys. Res. Lett. 29, 1172 (2002)

    Article  ADS  Google Scholar 

  71. A. Kumar, U. Rabe, S. Hirsekorn, W. Arnold, Elasticity mapping of precipitates in polycrystalline materials using atomic force acoustic microscopy. Appl. Phys. Lett. 92, 183106 (2008)

    Article  ADS  CAS  Google Scholar 

  72. U. Rabe, S. Amelio, M. Kopycinska, S. Hirsekorn, M. Kempf, A.W. Göken, Imaging and measurement of local mechanical properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65–70 (2002)

    Article  CAS  Google Scholar 

  73. D.C. Hurley, K. Shen, N.M. Jennett, J.A. Turner, Atomic force acoustic microscopy methods to determine thin-film elastic properties. J. Appl. Phys. 94, 2347–2354 (2003)

    Article  CAS  ADS  Google Scholar 

  74. G. Stan, R.F. Cook, Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy. Nanotechnology 19, 235701 (2008)

    Article  ADS  CAS  Google Scholar 

  75. K.L. Johnson, Contact Mechanics (Cambridge University, Cambridge, 1985)

    MATH  Google Scholar 

  76. I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  77. J.J. Vlassak, W.D. Nix, Indentation modulus of elastically anisotropic half spaces. Phil. Mag. A 67, 1045–1056 (1993)

    Article  ADS  Google Scholar 

  78. R.D. Mindlin, Compliance of elastic bodies in contact. J. Appl. Mech.16, 259–268 (1949)

    MATH  MathSciNet  Google Scholar 

  79. D.C. Hurley, J.A. Turner, Measurement of Poisson’s ratio with contact-resonance atomic force microscopy. J. Appl. Phys. 102, 033509 (2007)

    Article  ADS  CAS  Google Scholar 

  80. P.E. Mazeran, J.L. Loubet, Force modulation with a scanning force microscope: an analysis. Tribol. Lett. 3, 125–132 (1997)

    Article  CAS  Google Scholar 

  81. G. Stan, W. Price, Quantitative measurements of indentation moduli by atomic force acoustic microscopy using a dual reference method. Rev. Sci. Instrum. 77, 103707 (2006)

    Article  ADS  CAS  Google Scholar 

  82. I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen, E. Riedo, Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  83. G.M.L. Gladwell, Contact problems in the classical theory of elasticity, Sijthoff & Noordhoff (Alphen aan den Rijn, The Netherlands, 1980)

    Google Scholar 

  84. X. Wang, J. Song, Z.L. Wang, Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J. Mater. Chem. 17, 711–720 (2007)

    Article  CAS  Google Scholar 

  85. R.W. Carpick, D.F. Ogletree, M. Salmeron, Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997)

    Article  CAS  ADS  Google Scholar 

  86. S.O. Kucheyev, J.E. Bradby, J.S. Williams, S.M.V. Jagadish, Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80, 956–958 (2002)

    Article  CAS  ADS  Google Scholar 

  87. C.Q. Sun, B.K. Tay, X.T. Zeng, S. Li, T.P. Chen, J. Zhou, H.L. Bai, E.Y. Jiang, Bond-order-bond-length-bond-strength (bond OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J.Phys.: Condens. Matter 14, 7781–7795 (2002)

    Google Scholar 

  88. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. (Weinheim, Ger.) 15, 353–389 (2003)

    Google Scholar 

  89. A.A. Kudryavtsev, The Chemistry and Technology of Selenium and Tellurium (Collet’s Ltd., London, 1974)

    Google Scholar 

  90. A.J. Kulkarni, M. Zhou, F.J. Ke, Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16, 2749–2756 (2005)

    Article  CAS  ADS  Google Scholar 

  91. Y. Wen, Y. Zhang, Z. Zhu, Size-dependent effects on equilibrium stress and strain in nickel nanowires. Phys. Rev. B 76, 125423 (2007)

    Article  ADS  CAS  Google Scholar 

  92. H. Gao, C.H. Chiu, J. Lee, Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29, 2471–2492 (1992)

    Article  Google Scholar 

  93. M. Lucas, W. Mai, R. Yang, Z.L. Wang, E. Riedo, Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett. 7, 1314–1317 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  94. R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)

    Article  CAS  ADS  Google Scholar 

  95. R. Dingreville, J.M. Qu, M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids 53, 1827 (2005)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  96. J. He, C.M. Lilley, Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  97. M.T. McDowell, A.M. Leach, K. Gall, On the elastic modulus of metallic nanowires. Nano Lett. 8, 3613–3618 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  98. B. Lee, R.E. Rudd, First-principles calculation of mechanical properties of Si < 001 > nanowires and comparison to nanomechanical theory. Phys. Rev. B 75, 195328 (2007)

    Article  ADS  CAS  Google Scholar 

  99. P.S. Branicio, J.P. Rino, Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Phys. Rev. B. 62, 16950–16955 (2000)

    Article  CAS  ADS  Google Scholar 

  100. P. Villain, P. Beauchamp, K.F. Badawi, P. Goudeau, P.O. Renault Atomistic calculation of size effects on elastic coefficients in nanometer-sized tungsten layers and wires. Scr. Mater. 50, 1247–1251 (2004)

    Google Scholar 

  101. X. Li, T. Ono, Y. Wang, M. Esashi, Ultrathin single-crystalline-silicon cantilever resonantors: Fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3083 (2003)

    Article  CAS  ADS  Google Scholar 

  102. C.Y. Nam, T.D. Jaroenapibal, D.E. Luzzi, S. Evoy, J.E. Fischer, Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153–158 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  103. L. Dong, B.J. Nelson, Tutorial-Robotics in the small, Part II: Nanorobotics. IEEE Robot. Automat. Mag. 14, 111–121 (2007)

    Article  MATH  Google Scholar 

  104. L. Dong, A. Subramanian, B.L. Nelson, Carbon nanotubes for nanorobotics. Nanotoday 2, 12–20 (2007)

    Google Scholar 

  105. M.Y.A. Yousif, P. Lundgren, P. Ghavanini, B.S. Enoksson, CMOS considerations in nanoelectromechanical carbon nanotube-based switches. Nanotechnology 19, 285204 (2008)

    Article  CAS  Google Scholar 

  106. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  107. X. Wang, J. Song, J. Liu, Z.L. Wang Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    Google Scholar 

  108. B.A. Buchine, W.L. Hughes, F.L. Degertekin, Z.L. Wang, Bulk acoustic resonator based on piezoelectric ZnO belts. Nano Lett. 6, 1155–1159 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  109. R. Yang, Y. Qin, L. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nature Nanotech. 4, 34–39 (2009)

    Article  CAS  ADS  Google Scholar 

  110. L. Xiao, Z. Chen, C. Feng, L. Liu, Z.Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan, Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8, 4539–4545 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  111. M.F. Ashby, Y.J.M. Brechet, Designing hybrid materials. Acta Mater. 51, 5801–5821 (2003)

    CAS  Google Scholar 

  112. F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signal with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  113. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003)

    CAS  Google Scholar 

  114. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Materials Today 9, 18–27 (2006)

    Article  CAS  Google Scholar 

  115. B.T. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  116. P.J. Pauzauskie, P. Yang, Nanowire photonics. Mater. Today 9, 36–45 (2006)

    Article  CAS  Google Scholar 

  117. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  118. F. Patolsky, C.M. Lieber, Nanowire nanosensors. Mater. Today 8(4), 20–28 (2005)

    Article  CAS  Google Scholar 

  119. M. Willander, P. Klason, L.L. Yang, S.M. Al-Hilli, Q.X. Zhao, O. Nur, ZnO nanowires: chemical growth, electrodeposition, and application to intracellular nano-sensors. Phys. Stat. Sol. (c) 5, 3076–3083 (2008)

    Article  CAS  Google Scholar 

  120. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. London A 324, 301–313 (1971)

    Article  CAS  ADS  Google Scholar 

  121. B.V. Derjaguin, V.M. MĂ¼ller, Y.P. Toporov, Effect of contact deformation on the adhesion of particles. J. Colloid Interf. Sci. 53, 314–326 (1975)

    Article  CAS  Google Scholar 

  122. D. Maugis, Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Stan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stan, G., Cook, R.F. (2010). Mechanical Properties of One-Dimensional Nanostructures. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03535-7_16

Download citation

Publish with us

Policies and ethics