Skip to main content

Bioinformatics of Seven-Transmembrane Receptors in Plant Genomes

  • Chapter
  • First Online:
  • 892 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Seven-transmembrane receptors (7TMRs; also known as G protein-coupled receptors, GPCRs) constitute the largest receptor superfamily in metazoa. In striking contrast, very few numbers of 7TMRs are reported in plants. Comparative analysis revealed that many of 7TMR proteins found in plants are in fact unique to the plant kingdom. More interestingly, some 7TMR proteins appear to have acquired GPCR functions independently during their evolution. Furthermore, the origin(s) of 7TMR proteins goes back to the level of eukaryote–prokaryote divergence. In order to understand such deep divergence, powerful and sensitive bioinformatics tools are necessary. In this chapter, we first overview the plant 7TMR proteins and how they are distinct from metazoan counterparts. We review various computational methods that are used for classifying 7TMR proteins and their strengths and weaknesses when they are applied for this divergent protein family. We describe our recent efforts to provide a computational tool that facilitates identifying 7TMR candidates from diverse genomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The original GPCRDB was updated until June 2006. Although the new GPCRDB resumed the development and updating later, as of this writing, the new GPCRDB still has only a part of the original content. Therefore, all statistics from GPCRDB in this chapter were obtained from the original GPCRDB (available from http://www.gpcr.org/7tm_old/). The new GPCRDB is available from http://www.gpcr.org/7tm/.

  2. 2.

    All % similarities are based on blastp search results. These values are obtained using only the highly similar regions aligned with blastp. The % similarity would be lower if the entire protein regions are aligned.

  3. 3.

    An E-value or expect value for similarity search is the number of hits you can expect to see by chance when searching the database. The E-value is related to the P-value (the probability), but not the same. An E-value of 1 means that you can expect to see one hit with the same score or higher simply by chance by searching the same size of a database. Similar to the P-value, lower the E-values, especially closer they are to 0, the more significant the matches are. You cannot obtain such hits purely by chance.

  4. 4.

    See other chapters of this book for more details on plant G proteins.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell AL, Moulton G, Nordle A, Paine K, Taylor P, Uddin A, Zygouri C (2003) PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res 31:400–402

    Article  CAS  PubMed  Google Scholar 

  • Baasiri RA, Lu X, Rowley PS, Turner GE, Borkovich KA (1997) Overlapping functions for two G protein alpha subunits in Neurospora crassa. Genetics 147:137–145

    CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava GP (2004) GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nucleic Acids Res 32:W383–W389

    Article  CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava GP (2005) GPCRsclass: a web tool for the classification of amine type of G-protein-coupled receptors. Nucleic Acids Res 33:W143–W147

    Article  CAS  PubMed  Google Scholar 

  • Bjarnadóttir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schiöth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273

    Article  PubMed  Google Scholar 

  • Chen CP, Kernytsky A, Rost B (2002) Transmembrane helix predictions revisited. Protein Sci 11:2774–2791

    Article  CAS  PubMed  Google Scholar 

  • Chen J-G, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731

    Article  CAS  PubMed  Google Scholar 

  • Chen JG (2008) Heterotrimeric G-proteins in plant development. Front Biosci 13:3321–3333

    Article  CAS  PubMed  Google Scholar 

  • Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135:907–915

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Hartmann HA, Wu MJ, Friedman EJ, Chen JG, Pulley M, Schulze-Lefert P, Panstruga R, Jones AM (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Mol Biol 60:583–597

    Article  CAS  PubMed  Google Scholar 

  • Clyne PJ, Warr CG, Carlson JR (2000) Candidate taste receptors in Drosophila. Science 287:1830–1833

    Article  CAS  PubMed  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim JH, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson JM, Doyle DA, Sansom MS (2005) Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng Des Sel 18:295–308

    Article  CAS  PubMed  Google Scholar 

  • Davies MN, Secker A, Freitas AA, Mendao M, Timmis J, Flower DR (2007) On the hierarchical classification of G protein-coupled receptors. Bioinformatics 23:3113–3118

    Article  CAS  PubMed  Google Scholar 

  • Davies MN, Secker A, Halling-Brown M, Moss DS, Freitas AA, Timmis J, Clark E, Flower DR (2008) GPCRTree: online hierarchical classification of GPCR function. BMC Res Notes 1:67

    Article  PubMed  Google Scholar 

  • Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56:77–88

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    Article  CAS  PubMed  Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Fernandes MS, Pierron V, Michalovich D, Astle S, Thornton S, Peltoketo H, Lam EW, Gellersen B, Huhtaniemi I, Allen J, Brosens JJ (2005) Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J Endocrinol 187:89–101

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson R, Lagerström MC, Schiöth HB (2005) Expansion of the superfamily of G-protein-coupled receptors in chordates. Ann NY Acad Sci 1040:89–94

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson R, Schiöth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67:1414–1425

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang SG, Nielsen CB, Butler J, Endrizzi M, Qui DY, Ianakiev P, Pedersen DB, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stabge-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li WX, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seller S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  • Gao QB, Wang ZZ (2006) Classification of G-protein coupled receptors at four levels. Protein Eng Des Sel 19:511–516

    Article  CAS  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  CAS  PubMed  Google Scholar 

  • Gloriam DE, Fredriksson R, Schiöth HB (2007) The G protein-coupled receptor subset of the rat genome. BMC Genomics 8:338

    Article  PubMed  Google Scholar 

  • Gookin TE, Kim J, Assmann SM (2008) Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biol 9:R120

    Article  PubMed  Google Scholar 

  • Gunnarsson I, Andersson P, Wikberg J, Lundstedt T (2003) Multivariate analysis of G protein-coupled receptors. J Chemometrics 17:82–92

    Article  CAS  Google Scholar 

  • Guo J, Zeng Q, Emami M, Ellis BE, Chen JG (2008) The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE 3:e2982

    Article  PubMed  Google Scholar 

  • Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2

    Article  PubMed  Google Scholar 

  • Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res 31:294–297

    Article  CAS  PubMed  Google Scholar 

  • Hsieh M-H, Goodman HM (2005) A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors. J Exp Bot 56:3137–3147

    Article  CAS  PubMed  Google Scholar 

  • Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ (2008) The 20 years of PROSITE. Nucleic Acids Res 36:D245–D249

    Article  CAS  PubMed  Google Scholar 

  • Illingworth CJ, Parkes KE, Snell CR, Mullineaux PM, Reynolds CA (2008) Criteria for confirming sequence periodicity identified by Fourier transform analysis: application to GCR2, a candidate plant GPCR? Biophys Chem 133:28–35

    Article  CAS  PubMed  Google Scholar 

  • Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS (2007a) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104:17317–17322

    Article  CAS  PubMed  Google Scholar 

  • Johnston CA, Temple BR, Chen JG, Gao Y, Moriyama EN, Jones AM, Siderovski DP, Willard FS (2007b) Comment on “A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid.” Science 318: 914, author reply 914

    Google Scholar 

  • Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572–578

    Article  CAS  PubMed  Google Scholar 

  • Josefsson LG (1999) Evidence for kinship between diverse G-protein coupled receptors. Gene 239:333–340

    Article  CAS  PubMed  Google Scholar 

  • Josefsson LG, Rask L (1997) Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. Eur J Biochem 249:415–420

    Article  CAS  PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35:W429–W432

    Article  PubMed  Google Scholar 

  • Karchin R, Karplus K, Haussler D (2002) Classifying G-protein coupled receptors with support vector machines. Bioinformatics 18:147–159

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Moriyama EN, Warr CG, Clyne PJ, Carlson JR (2000) Identification of novel multi-transmembrane proteins from genomic databases using quasi-periodic structural properties. Bioinformatics 16:767–775

    Article  CAS  PubMed  Google Scholar 

  • Kimmel AR, Parent CA (2003) The signal to move: D. discoideum go orienteering. Science 300:1525–1527

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni R, Thon M, Pan H, Dean R (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24

    Article  PubMed  Google Scholar 

  • Lapinsh M, Gutcaits A, Prusis P, Post C, Lundstedt T, Wikberg JES (2002) Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci 11:795–805

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ (2007) Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf) 190:9–19

    Article  CAS  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232

    Article  CAS  PubMed  Google Scholar 

  • Liao L, Noble WS (2003) Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. J Comput Biol 10:857–868

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhu H (2008) Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409:1–10

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Wang Z, Jones AM, Moriyama EN (2009) 7TMRmine: A Web server for hierarchical mining of 7TMR proteins. BMC Genomics 10:275

    Google Scholar 

  • Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39:239–264

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T (2008) GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol 10:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288

    Article  CAS  PubMed  Google Scholar 

  • Moriyama EN, Kim J (2005) Protein family classification with discriminant function analysis. In: Gustafson JP, Shoemaker R, Snape JW (eds) Genome exploitation: data mining the genome. Springer, New York, pp 121–132

    Google Scholar 

  • Moriyama EN, Strope PK, Opiyo SO, Chen Z, Jones AM (2006) Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biology 7:R96

    Article  PubMed  Google Scholar 

  • Mulder NJ, Apweiler R (2008) The InterPro database and tools for protein domain analysis. Curr Protoc Bioinformatics Chapter 2, Unit 2 7

    Google Scholar 

  • Nakafuku M, Itoh H, Nakamura S, Kaziro Y (1987) Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the alpha subunit of mammalian G proteins. Proc Natl Acad Sci USA 84:2140–2144

    Article  CAS  PubMed  Google Scholar 

  • Nakafuku M, Obara T, Kaibuchi K, Miyajima I, Miyajima A, Itoh H, Nakamura S, Arai K, Matsumoto K, Kaziro Y (1988) Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci USA 85:1374–1378

    Article  CAS  PubMed  Google Scholar 

  • Opiyo SO, Moriyama EN (2007) Protein family classification with partial least squares. J Proteome Res 6:846–853

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  • Papasaikas PK, Bagos PG, Litou ZI, Hamodrakas SJ (2003) A novel method for GPCR recognition and family classification from sequence alone using signatures derived from profile hidden Markov models. SAR QSAR Environ Res 14:413–420

    Article  CAS  PubMed  Google Scholar 

  • Papasaikas PK, Bagos PG, Litou ZI, Promponas VJ, Hamodrakas SJ (2004) PRED-GPCR: GPCR recognition and family classification server. Nucleic Acids Res 32:W380–W382

    Article  CAS  PubMed  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  PubMed  Google Scholar 

  • Sammut SJ, Finn RD, Bateman A (2008) Pfam 10 years on: 10, 000 families and still growing. Brief Bioinform 9:210–219

    Article  CAS  PubMed  Google Scholar 

  • Schiöth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142:94–101

    Article  PubMed  Google Scholar 

  • Schiöth HB, Nordström KJ, Fredriksson R (2007) Mining the gene repertoire and ESTs for G protein-coupled receptors with evolutionary perspective. Acta Physiol (Oxf) 190:21–31

    Article  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  CAS  PubMed  Google Scholar 

  • Skrabanek L, Campagne F, Weinstein H (2003) Building protein diagrams on the web with the residue-based diagram editor RbDe. Nucleic Acids Res 31:3856–3858

    Article  CAS  PubMed  Google Scholar 

  • Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780

    Article  CAS  PubMed  Google Scholar 

  • Strope PK, Moriyama EN (2007) Simple alignment-free methods for protein classification: a case study from G-protein-coupled receptors. Genomics 89:602–612

    Article  CAS  PubMed  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  CAS  PubMed  Google Scholar 

  • Tang YT, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, Funk WD (2005) PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol 61:372–380

    Article  CAS  PubMed  Google Scholar 

  • Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266

    Article  CAS  PubMed  Google Scholar 

  • Thomas JH, Robertson HM (2008) The Caenorhabditis chemoreceptor gene families. BMC Biol 6:42

    Article  PubMed  Google Scholar 

  • Thomas P, Pang Y, Dong J, Groenen P, Kelder J, de Vlieg J, Zhu Y, Tubbs C (2007) Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins. Endocrinology 148:705–718

    Article  CAS  PubMed  Google Scholar 

  • Turner GE, Borkovich KA (1993) Identification of a G protein alpha subunit from Neurospora crassa that is a member of the Gi family. J Biol Chem 268:14805–14811

    CAS  PubMed  Google Scholar 

  • Tusnády GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  PubMed  Google Scholar 

  • Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  Google Scholar 

  • Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O'Hara P, MacKay VL (1989) The STE4 and STE18 genes of yeast encode potential beta and gamma subunits of the mating factor receptor-coupled G protein. Cell 56:467–477

    Article  CAS  PubMed  Google Scholar 

  • Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J (2009) SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:D380–D386

    Article  CAS  PubMed  Google Scholar 

  • Wistrand M, Kall L, Sonnhammer EL (2006) A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15:509–521

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC, Cole JC, Logsdon JM Jr, Patterson DJ, Bhattacharya D, Katz LA (2008) Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 8:14

    Article  PubMed  Google Scholar 

  • Zhu Y, Bond J, Thomas P (2003a) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA 100:2237–2242

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Rice CD, Pang Y, Pace M, Thomas P (2003b) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 100:2231–2236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alan Jones (University of North Carolina) for discussion and unpublished information. This work was in part funded by the grant number R01LM009219 from the National Library of Medicine to E.N.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuko N. Moriyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moriyama, E.N., Opiyo, S.O. (2010). Bioinformatics of Seven-Transmembrane Receptors in Plant Genomes. In: Yalovsky, S., Baluška, F., Jones, A. (eds) Integrated G Proteins Signaling in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03524-1_13

Download citation

Publish with us

Policies and ethics