Skip to main content

The Soil Profile: The Structure of Plant – Mineral Interaction Space

  • Chapter
  • First Online:
Soils, Plants and Clay Minerals
  • 2137 Accesses

Abstract

Overall the transformation of rock into altered material is one that changes the chemical associations of the materials found in rocks. Rocks are formed at temperatures above those of the surface of the earth, by burial and thermal “hot spots” due to movement of molten materials coming from great depths. When these mineral assemblages are exposed to abundant water resources at low temperatures, they become unstable in a thermodynamic and chemical sense. New minerals are formed. If one looks at the overall result of such events, it appears that some elements are taken from the mineral phase while others are left within the solid materials. Li and Schoonmaker (2004) indicate that the composition of average shales, which represent the soils of the earth moved into sedimentary basins, are much the same as average crustal rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo P and Violante P (2000) Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16: 229–256.

    Article  Google Scholar 

  • Akin W (1991) Global Patterns Climate, Vegetation and Soils, Univ Oklahoma Press, 370 pp.

    Google Scholar 

  • April R and Keller D (1990) Mineralogy of the rhizosphere in forest soils of the eastern United States. Biogeochemistry 9: 1–18.

    Article  Google Scholar 

  • Arocena J, Glowa KR, Massicotte HB and Lavkulich L (1999) Chemical and mineral compositions of ectomycorrhizosphere soils of subalpine fir (Abies lasocarpa (Hook.) Nutt.) in the Ae horizon of a Luvosol. Can J Soil Sci 79: 25–35.

    Article  Google Scholar 

  • Arocena J, Zhu L and Hall K (2003) Mineral accumulation induced by biological activity on granitic rocks in Qinghai Plateau, China. Earth Surf Process Landforms 28: 1429–1437.

    Article  Google Scholar 

  • Augusto L, Turpault M-P and Ranger J (2000) Impact of forest tree species on feldspar weathering rates. Geoderma 96: 215–237.

    Article  Google Scholar 

  • Badr MA, Shafei AM and Sharaf El-Deen SH (2006) The dissolution of K and P – bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. J Agr Bio Sci 2: 5–11.

    Google Scholar 

  • Balogh-Brunstad Z, Keller C, Gill R, Bormann B and Li C (2008) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88: 153–167.

    Article  Google Scholar 

  • Banfield JF and Nealson KH (1997) Geomicrobiology: Interaction Between Microbes and Minerals Reviews in Mineralogy, Vol. 35, Min Soc Ame, p. 448.

    Google Scholar 

  • Barkaudah Y and Henderson J (2006) Plant ashes from Syria and the manufacture of ancient glass: Ethnographic and scientific aspects. Jour Glass Studies 48: 297–321.

    Google Scholar 

  • Barker W, Welch S and Banfield J (1997) Biogeochemical weathering of silicate minerals, 392–428. In JF Banfield and KH Nealson (eds.), Geomicrobiology: Interactions Between Microbes and Minerals Reviews in Mineralogy, Vol. 35, Miner Soc Ame, p. 448.

    Google Scholar 

  • Barker WW, Welch SA, Chu S and Banfield J (1998) Experimental observations on the effects of bacteria on aluminosilicate weathering. Ame Mineral 83: 1551–1563.

    Google Scholar 

  • Berthelin J (1983) Microbial weathering processes, 223–262. In WE Krumbein (ed.) Microbial Geochemistry Blackwell Scientific p. 330.

    Google Scholar 

  • Birkeland P, Shroba R, Burns S, Price P and Tonkin P (2003) Integrating soils and geomorphology in mountains – an example from the Front Range of Colorado. Geoporphology 55: 329–344.

    Article  Google Scholar 

  • Birkeland P (1999) Soils and Geomorphology, Oxford Univ Press, 429 pp.

    Google Scholar 

  • Blake RC, Shute EA and Howard GT (1994) Solubilisation of minerals by bacteria: Electrophoretic mobility of thibacillus ferooxidans in the presence of iron, pyrite and sulphur. Appl Environ Microbiol 60: 3349–3357.

    Google Scholar 

  • Bormann FH and Likens GE (1994) Pattern and Process in a Forested Ecosystem, Springer, p. 253.

    Google Scholar 

  • Calvaruso C, Turpault M-P and Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to nutrition in trees: A budgeting analysis. Appl Environ Microbiol 72: 1258–1266.

    Article  Google Scholar 

  • Carter D and Arocena J (2000) Soil formation under two moss species in sandy materials of central British Columbia (Canada). Geoderma 98: 157–176.

    Article  Google Scholar 

  • Castaldini M, Mirabella A, Sartori G, Fabiani A, Santomassimo F and Miclaus N (2002) Soil development and microbial community along an altitude transect in Trentino mountains, 217–228. In A Violante, PM Huang, JM Bolling and L Gianfreda (eds.), Develoments in Soil Science Vol. 28B, Elsevier.

    Google Scholar 

  • Chen J, Blume HP and Beyer L (2000) Weathering of rocks induced by lichen colonization – a review. Catena 39: 124–146.

    Google Scholar 

  • Cheshire M, Dumat C, Fraser A, Hillier S and Staunton S (2000) The interaction between soil organic matter and soil clay minerals by selective removal and controlled addition of organic matter. Eur Jour Soil Sci 51: 497–509.

    Google Scholar 

  • Clark, S (ed.) (1966) Handbook of Physical Constants, Vol. 97, Geol Soc Ame Memoir, 587pp.

    Google Scholar 

  • Cochran M and Berner R (1996) Promotion of chemical weathering by higher plants: Field observations on Hawaiian basalts. Chem Geol 132: 71–77.

    Google Scholar 

  • Coleman SM (1986) Levels of time information in weathering measurements with examples from weathering rinds on volcanic clasts in the Western United States, 379–393. In SM Coleman and DP Dethier (eds.), Rates of Chemical Weathering of Rocks and Minerals, Academic Press.

    Google Scholar 

  • Cornejo J and Hermosin MC (1996) Interaction of humic substances and soil clays, 595–619. In A Piccolo (ed.), Humci Substances in Terrestrial Ecosystems, Elsevier 720 pp.

    Google Scholar 

  • Denbigh K (1987) The Principles of Chemical Equilibrium, Cambridge Univ Press, p. 494.

    Google Scholar 

  • Dethier D (1986) Weathering rates and the chemical flux from catchments in the Pacific Northwest, USA, 503–529. In SM Coleman and DP Dethier (eds.), Rates of Chemical Weathering of Rocks and Minerals, Academic Press.

    Google Scholar 

  • Duchaufour Ph (1997) Abrégé de Pédologie, Masson, p. 291.

    Google Scholar 

  • Escudero A, Martinez I, de la Cruz A, Otalora M and Maestre F (2007) Soil lichens have species – specific effects on the seeding emergence of three gypso-phile plant species. J Arid Environ 70: 18–28.

    Article  Google Scholar 

  • Evans L and Cameron B (1979) A chronosequence of soils developed from granitic morainal material, Baffin Island. Can J Soil Sci 59: 203–210.

    Article  Google Scholar 

  • Foth H (1990) Fundamentals of Soil Science, Wiley, p. 360.

    Google Scholar 

  • Garrels R and Christ G (1965) Solutions, Minerals and Equilibria, Harper and Row, 450 pp.

    Google Scholar 

  • Glowa K, Arocena J and Massicotte H (2003) Extractionof potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20: 1–13.

    Article  Google Scholar 

  • Glowa K, Arocena L and Massicotte H (2004) Properties of soils influenced by ectomycorrhizal fungi in hydrid spruce [Picea glauca x engelmannii (Moench.)]. Can J Soil Sci 84: 91–102.

    Article  Google Scholar 

  • Gobat J-M, Aragno M and Matthey X (2003) Le Sol Vivant, Presses Polytechniques et Universitaires Romandes, 568 pp.

    Google Scholar 

  • Graham R and Wood H (1991) Morphological development and clay redistribution in lysimeter soils under chaparral and pine. Soil Sci Soc Ame J 55: 1638–1646.

    Article  Google Scholar 

  • Hutchens E, Clipson N and McDermott F (2008) Mineralogical influence on the structure and diversity of bacterial communities associated with silicate minerals. Geophys Res Abstracts EGU2008 10: A 3930.

    Google Scholar 

  • Jenny H (1994) Factors of Soil Formation, Dover, 280 pp.

    Google Scholar 

  • Johnson N and Gehring C (2007) Mycorrhizas: Symbiotic mediators of rhizosphere and ecosystem processes, 73–98. In Z Cardon and J Whitbeck (eds.), The Rhizosphere an Ecological Perspective, Elsevier, 203 pp.

    Google Scholar 

  • Kawano M and Tomita K (2002) Microbiotic formation of silicate minerals in the weathering environment of a pyroclastic deposit. Clays Clay Miner 50: 99–110.

    Article  Google Scholar 

  • Khademi H and Arocena L (2008) Kaolinite formation from palygorskite and sepiolite in rhizosphere soils. Clays Clay Miner 56: 429–436.

    Article  Google Scholar 

  • Kostka JE, Haefele E, Viehweger R and Stucki J (1999) Respiration and dissolution of iron (III)-containing clay minerals by bacteria. Environ Sci Technol 33: 3127–3133.

    Article  Google Scholar 

  • Li Y-H and Schoonmaker J (2004) Chemical composition and mineralogy of marine sediments, Chap. 7.01, 1–35. In F Mackenzie (ed.), Treatise of Geochemistry, Vol. 7, Elsevier 567 pp.

    Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y and Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus I liquid culture. Environ Geochem Health 28: 133–140.

    Article  Google Scholar 

  • Lowe D (1986) Controls on the rates of weathering and clay mineral genesis in airfall tephras: A review and New Zealand case study, 265–319. In SM Coleman DP Dethier (eds.), Rates of Checmial Weathering of Rocks and Minerals, Academic Press.

    Google Scholar 

  • Mahaney W (1986) Rates of mineral weathering in the Wind River Mountains, western Wyoming, 147–167. In SM Coleman and DP Dethier (eds.), Rates of Chemical Weathering of Rocks and Minerals, Academic Press.

    Google Scholar 

  • Mariotti A (1982) Apports de la Géochimie Isotopique a la Connaissance du Cycle de l’Azote, Univ P et M Curie Paris, p. 488.

    Google Scholar 

  • Millot G (1964) Géologie des argiles, Masson and Cie, Paris, p. 400.

    Google Scholar 

  • Newman DK (2001) How bacteria respire minerals. Science 292: 1312–1313.

    Article  Google Scholar 

  • Oades J and Waters A (1991) Aggregate heirachry in soils. Aust J Soil Sci 29: 815–828.

    Article  Google Scholar 

  • Odum E (1971) Fundamentals of Ecology, Saunders, 574 pp.

    Google Scholar 

  • Owens L and Watson J (1979) Rates of weathering and soil formation on granite in Rhodesia. Soil Sci Soc Ame J 43: 160–167.

    Article  Google Scholar 

  • Pedro G (1966) Essai sur la caractérisation géochimique des différents processus zonaux résultant de l’altération des roches superficielles. Compt Rendus Acad Sci Paris Ser D 262: 1828–1831.

    Google Scholar 

  • Proust D and Velde B (1978) Beidellite crystallisation from plagioclase and amphibole precursors: Local and long range equilibrium during weathering. Clay Miner 13: 199–209.

    Article  Google Scholar 

  • Puget P, Chenu C, Balesdent J (2000) Dynamics of soil organic matter associated with particle size fractions of water – stale aggregates. Eur Jour Soil Sci 51: 595–605.

    Google Scholar 

  • Raulund-Rasmussen K, Borggaard O and Hansen H (1998) Effect of natural organic soil solutes on weathering rates of soil minerals. Euro J Soil Sci 49: 397–406.

    Google Scholar 

  • Ruhe R (1984) Soil – climate system across the prairies in Midwestern USA. Geoderma 34: 201–219.

    Article  Google Scholar 

  • Sak P, Fischer D, Gardner T, Murphy K and Brantley S (2004) Rates of weathering rind formation on Costa Rican basalt. Geochim Cosmochim Acta 68: 1453–1472.

    Article  Google Scholar 

  • Scheinost AC and Schwertmann U (1999) Color identification of iron oxides and hydroxysulfates. Soil Sci Soc Ame J 63: 1463–1471.

    Google Scholar 

  • Schenk H and Jackson R (2002) The global biogeography of roots. Ecol Monographs 72: 311–328.

    Article  Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biogeochem 37: 1918–1922.

    Article  Google Scholar 

  • Smits M, Hoffland E, Jongmans A and van Breeman N (2005) Contribution of mineral tunnelling to total feldspar weathering. Geoderma 125: 59–69.

    Article  Google Scholar 

  • Soil Survey Staff (1975) Soil Taxonomy US Dept Agriculture Handbook no 436, 754 pp.

    Google Scholar 

  • Taylor L, Leake J, Quirk J, Hardy K, Banwart S and Beerling D (2009) Biological weathering and long-term carbon cycle: Integrating mycorrhizal evolution and function into current paradigm. Geobiology 7: 171–191.

    Google Scholar 

  • Ullman W, Kirchman D, Welch S and Vandevivere P (1997) Laboratory evidence for microbially mediated silicate mineral dissolution. Chem Geol 132:11–17.

    Article  Google Scholar 

  • Ullman WJ and Welch SA (2002) Organic ligands and feldspar dissolution, 3–35. In R Hellman and SA Wood (eds.), Water – Rock Interaction, Ore Deposits and Environmental Geochemistry, Vol. 7, Geochemical Society Special Publication, 672pp.

    Google Scholar 

  • Valeton I (1972) Bauxites: Developments in Soil Science, Vol. 1, Elsevier, 226 pp.

    Google Scholar 

  • Vanden Heuvel RC (1966) The occurrence of sepiolite and attapulgite in eh calcareous zone of a soil near Las Cruces N Mex. Clays Clay Miner 13: 193–207.

    Article  Google Scholar 

  • Velde B (1985) Clay Minerals: A Physico-Chemical Explanation of Their Occurrence, Elsevier, 427 pp.

    Google Scholar 

  • Velde B, Goffé B and Hoellard A (2003) Evolution of clay minerals in a chronosequence of poldered sediments under the influence of a natural pasture development. Clays Clay Miner 51: 206–218.

    Google Scholar 

  • Velde B and Meunier A (2008) The Origin of Clay Minerals in soils and Weathered Rocks, Springer, 406 pp.

    Google Scholar 

  • Walker L and del Moral R (2003) Primary Succession and Ecosystem Rehabilitation, Cambridge Univ Press, 456 pp.

    Google Scholar 

  • Welch SA, Barker WW and Banfield J (1999) Microbial extracellular polysacchrides and plagioclase dissolution. Geochim Cosmochim Acta 63: 1405–1419.

    Article  Google Scholar 

  • Welch SA and Ullman WJ (1999) The effect of microbial glucose metabolism on bytownite feldspar dissolution rtes between 5°C. and 35°C. Ame Miner 63: 3247–3259.

    Google Scholar 

  • Wellman C (2003) Dating the origin of land plants Chapter seven. In P Donoghue and M Smith (eds.), Telling the Evolutionary Time: Molecular Clocks and the Fossil Record, Taylor and Francis, London, 288 pp.

    Google Scholar 

  • Wierzchos J and Ascaso C (1996) Moprhological and chemical features of bioweathered granitic biotite induced by lichen activity. Clays Clay Miner 44: 652–657.

    Article  Google Scholar 

  • Wu L, Jacobson AD and Hausner M (2008) Characterisation of elemental release during microbe – granite interactions at T = 28°C. Geochim Cosmochim Acta 72: 1076–1095.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Velde, B., Barré, P. (2009). The Soil Profile: The Structure of Plant – Mineral Interaction Space. In: Soils, Plants and Clay Minerals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03499-2_2

Download citation

Publish with us

Policies and ethics