Skip to main content

Classifying Volume Datasets Based on Intensities and Geometric Features

  • Chapter
  • 452 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 240))

Abstract

Many state-of-the art visualization techniquesmust be tailored to the specific type of dataset, its modality (CT, MRI, etc.), the recorded object or anatomical region (head, spine, abdomen, etc.) and other parameters related to the data acquisition process. While parts of the information (imaging modality and acquisition sequence) may be obtained from the meta-data stored with the volume scan, there is important information which is not stored explicitly, e.g. anatomical region. Also, meta-data might be incomplete, inappropriate or simply missing.

This paper presents a novel and simple method of determining the type of dataset from previously defined categories. A 2D histogram of the dataset is used as input to the neural network, which classifies it into one of several categories it was trained with. Two types of 2D histograms have been experimented with, one based on intensity and gradient magnitude, the other one on intensity and distance from center.

A significant result is the ability of the system to classify datasets into a specific class after being trained with only one dataset of that class. Other advantages of the method are its easy implementation and its high computational performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankerst, M., Kastenmüller, G., Kriegel, H.-P., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Proc. of the 6th Int. Symposium on Advances in Spatial Databases (SSD), London, UK, pp. 207–226. Springer, Heidelberg (1999)

    Google Scholar 

  2. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Proc. of the symposium on Volume visualization (VVS), pp. 91–98. ACM Press, New York (1994)

    Chapter  Google Scholar 

  3. Cerquides, J., López-Sánchez, M., Ontañón, S., Puertas, E., Puig, A., Pujol, O., Tost, D.: Classification algorithms for biomedical volume datasets (chapter 16). In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 143–152. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chester, D.L.: Why two hidden layers are better than one. In: Int. Joint Conference on Neural Networks, Washington DC, pp. 265–268. Lawrence Erlbaum Associates, Mahwah (1990)

    Google Scholar 

  5. de Villiers, J., Barnard, E.: Backpropagation neural nets with one and two hidden layers. IEEE Trans. on Neural Networks 4(1), 136–141 (1992)

    Article  Google Scholar 

  6. del Río, A., Fischer, J., Köbele, M., Bartz, D., Straßer, W.: Augmented Reality Interaction for Semiautomatic Volume Classification. In: Kjems, E., Blach, R. (eds.) Eurographics Workshop on Virtual Environments (EGVE), Aalborg, Denmark, pp. 113–120. Eurographics Association (2005)

    Google Scholar 

  7. Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In: Proc. of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware (HWWS), pp. 9–16. ACM, New York (2001)

    Chapter  Google Scholar 

  8. Hadwiger, M., Kniss, J.M., Rezk-Salama, C., Weiskopf, D., Engel, K.: Real-time Volume Graphics. A. K. Peters, Ltd, Natick (2006)

    Google Scholar 

  9. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  10. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proc. of the 1998 IEEE symposium on Volume visualization (VVS), pp. 79–86. ACM Press, New York (1998)

    Chapter  Google Scholar 

  11. Kniss, J., Kindlmann, G., Hansen, C.: Interactive Volume Rendering using Multi-dimensional Transfer Functions and Direct Manipulation Widgets. In: Proc. of IEEE Visualization (VIS), pp. 255–262 (2001)

    Google Scholar 

  12. Krüger, J., Westermann, R.: Acceleration Techniques for GPU-based Volume Rendering. In: Proc. of IEEE Visualization (VIS), pp. 287–292 (2003)

    Google Scholar 

  13. Liu, Y., Dellaert, F.: A classification based similarity metric for 3D image retrieval. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 800–805 (1998)

    Google Scholar 

  14. Lundström, C., Ljung, P., Ynnerman, A.: Extending and simplifying Transfer Function design in medical Volume Rendering using local histograms. In: Eurographics/IEEE VGTC Symposium on Visualization (EuroVis), June 2005, pp. 263–270 (2005)

    Google Scholar 

  15. Pfister, H., Hardenbergh, J., Knittel, J., Lauer, H., Seiler, L.: The VolumePro real-time ray-casting system. In: Proc. of ACM SIGGRAPH, pp. 251–260. ACM Press/Addison-Wesley Publishing Co., New York (1999)

    Google Scholar 

  16. Rautek, P., Bruckner, S., Gröller, M.E.: Semantic layers for illustrative volume rendering. IEEE Trans. on Visualization and Computer Graphics 13(6), 1336–1343 (2007)

    Article  Google Scholar 

  17. Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.: Interactive volume rendering on standard PC graphics hardware using multi-textures and multi-stage rasterization. In: Proc. of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware (HWWS), pp. 109–118. ACM Press, New York (2000)

    Chapter  Google Scholar 

  18. Rezk-Salama, C., Keller, M., Kohlmann, P.: High-Level User Interfaces for Transfer Function Design with Semantics. IEEE Trans. on Visualization and Computer Graphics (Proc. IEEE Visualization) 11(5), 1021–1028 (2006)

    Article  Google Scholar 

  19. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart Hardware-Accelerated Volume Rendering. In: Proc. of the symposium on Data visualisation 2003 (VISSYM), Aire-la-Ville, Switzerland, pp. 231–238. Eurographics Association (2003)

    Google Scholar 

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  21. Serlie, I.W.O., Vos, F.M., Truyen, R., Post, F.H., van Vliet, L.J.: Classifying CT image data into material fractions by a scale and rotation invariant edge model. IEEE Trans. on Image Processing 16(12), 2891–2904 (2007)

    Article  Google Scholar 

  22. Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A Simple and Flexible Volume Rendering Framework for Graphics-Hardware-based Raycasting. In: Proc. of the Int. Workshop on Volume Graphics, pp. 187–195 (2005)

    Google Scholar 

  23. Svozil, D., Kvasnička, V., Pospíchal, J.: Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems 39(20), 43–62 (1997)

    Article  Google Scholar 

  24. Tzeng, F.-Y., Lum, E.B., Ma, K.-L.: A Novel Interface for Higher-Dimensional Classification of Volume Data. In: Proc. of IEEE Visualization (VIS), pp. 505–512 (2003)

    Google Scholar 

  25. Šereda, P., Vilanova Bartolí, A., Serlie, I.W.O., Gerritsen, F.A.: Visualization of Boundaries in Volumetric Data Sets Using LH Histograms. Trans. on Vis. and Comp. Graph. 12(2), 208–218 (2006)

    Article  Google Scholar 

  26. Wilson, O., Van Gelder, A., Wilhelms, J.: Direct Volume Rendering via 3D-textures. Technical Report UCSC-CRL-94-19, Univ. of California, Santa Cruz (1994)

    Google Scholar 

  27. Zhang, J., Sun, J.: Automatic classification of MRI images for three-dimensional volume reconstruction by using general regression neural networks. In: IEEE Nuclear Science Symposium Conference Record, October 2003, vol. 5, pp. 3188–3189 (2003)

    Google Scholar 

  28. Zukić, D., Elsner, A., Avdagić, Z., Domik, G.: Neural networks in 3D medical scan visualization. In: Plemenos, D. (ed.) In Proc. of the Int. Conf. on Computer Graphics and Artificial Intelligence (3IA), TEI Athens, May 2008, pp. 183–190 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zukić, D., Rezk-Salama, C., Kolb, A. (2009). Classifying Volume Datasets Based on Intensities and Geometric Features. In: Plemenos, D., Miaoulis, G. (eds) Intelligent Computer Graphics 2009. Studies in Computational Intelligence, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03452-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03452-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03451-0

  • Online ISBN: 978-3-642-03452-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics