Skip to main content

Standard Harmony Search Algorithm for Structural Design Optimization

  • Chapter
Harmony Search Algorithms for Structural Design Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 239))

Abstract

Most engineering optimization algorithms are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithms, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. The computational drawbacks of numerical methods have forced researchers to rely on meta-heuristic algorithms based on simulations to solve optimization problems. This chapter describes a basic harmony search (HS) meta-heuristic algorithm-based approach for optimizing the size and configuration of structural systems with both discrete and continuous design variables. This basic HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Various truss examples, including large-scale trusses under multiple loading conditions, are introduced to demonstrate the effectiveness and robustness of the basic harmony search algorithm-based methods, as compared to existing structural optimization techniques. The results indicate that the HS technique is a powerful search and optimization method for solving structural engineering problems compared to conventional mathematical methods or genetic algorithm-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  2. Metropolis, et al.: Metropolis et al Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  3. Glover, F.: Heuristic for integer programming using surrogate constraints. Decision Science 8(1), 156–166 (1977)

    Article  Google Scholar 

  4. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  5. Goldberg, D.E.: Genetic algorithm in search optimization and machine learning. Addision Wesley, Boston (1989)

    Google Scholar 

  6. Schwefel, H.P.: On the evolution of evolutionary computation. In: Zurada, J., Marks, R., Robinson, C. (eds.) Computational intelligence: imitating life, pp. 116–124. IEEE Press, New York (1994)

    Google Scholar 

  7. Fogel, D.B.: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems. Simulation 64(6), 399–406 (1995)

    Article  Google Scholar 

  8. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution. John Wiley, Chichester (1966)

    MATH  Google Scholar 

  9. Koza, J.R.: Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)

    Google Scholar 

  10. Adeli, H., Cheng, N.T.: Integrated genetic algorithm for optimization of space structures. J. Aerospace Engineering, ASCE 6(4), 315–328 (1993)

    Article  Google Scholar 

  11. Hajela, P.: Genetic search: An approach to the non-convex optimization problem. J. AIAA 28(7), 1205–1210 (1990)

    Article  Google Scholar 

  12. Jenkins, W.M.: Towards structural optimization via the genetic algorithm. Comput. Struct. 40(5), 1321–1327 (1991)

    Article  MATH  Google Scholar 

  13. Jenkins, W.M.: Structural optimization with the genetic algorithm. Struct. Engineer. 69(24), 418–422 (1991)

    Google Scholar 

  14. Jenkins, W.M.: Plane frame optimum design environment based on genetic algorithm. J. Struct. Engrg., ASCE 118(11), 3103–3112 (1992)

    Article  Google Scholar 

  15. Jenkins, W.M.: A genetic algorithm for structural design optimization. In: Grierson, D.E., Hajela, P. (eds.) Emergent computing methods in engineering design: Application of genetic algorithms and neural network, pp. 30–53. Springer, Berlin (1996)

    Google Scholar 

  16. Grierson, D.E., Pak, W.H.: Optimal sizing, geometrical and topological design using a genetic algorithm. Struct. Optimization 6, 151–159 (1993)

    Article  Google Scholar 

  17. Ohsaki, M.: Genetic algorithm for topology optimization of trusses. Comput. Struct. 57(2), 219–225 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rajan, S.D.: Sizing, shape, and topology design optimization of trusses using genetic algorithms. J. Struct. Engrg. ASCE 121(10), 1480–1487 (1995)

    Article  Google Scholar 

  19. Yang, J.P., Soh, C.K.: Structural optimization by genetic algorithms with tournament selection. J. Comp. in Civ. Engrg. ASCE 11(3), 195–200 (1997)

    Article  Google Scholar 

  20. Galante, M.: Genetic algorithms as an approach to optimize real-world trusses. Int. J. Numer. Methods Engrg. 39, 361–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rajeev, S., Krishnamoorthy, C.S.: Discrete optimization of structures using genetic algorithms. J. Structural Engineering, ASCE 118(5), 1233–1250 (1992)

    Article  Google Scholar 

  22. Rajeev, S., Krishnamoorthy, C.S.: Genetic algorithm-based methodologies for design optimization of trusses. J. Structural Engineering, ASCE 123(3), 350–358 (1997)

    Article  Google Scholar 

  23. Koumousis, V.K., Georgious, P.G.: Genetic algorithms in discrete optimization of steel truss roofs. J. Computing in Civil Engineering, ASCE 8(3), 309–325 (1994)

    Article  Google Scholar 

  24. Hajela, P., Lee, E.: Genetic algorithms in truss topological optimization. Int. J. Solids and Structures 32(22), 3341–3357 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Adeli, H., Kumar, S.: Distributed genetic algorithm for structural optimization. J. Aerospace Engineering, ASCE 8(3), 156–163 (1995)

    Article  Google Scholar 

  26. Wu, S.-j., Chow, P.-T.: Integrated discrete and configuration optimization of trusses using genetic algorithms. Computers and Structures 55(4), 695–702 (1995)

    Article  MATH  Google Scholar 

  27. Wu, S.-j., Chow, P.-T.: Steady-state genetic algorithms for discrete optimization of trusses. Computers and Structures 56(6), 979–991 (1995)

    Article  MATH  Google Scholar 

  28. Soh, C.K., Yang, J.: Fuzzy controlled genetic algorithm search for shape optimization. J. Computing in Civil Engineering, ASCE 10(2), 143–150 (1996)

    Article  Google Scholar 

  29. Camp, C., Pezeshk, S., Cao, G.: Optimized design of two-dimensional structures using a genetic algorithm. J. Structural Engineering, ASCE 124(5), 551–559 (1998)

    Article  Google Scholar 

  30. Shrestha, S.M., Ghaboussi, J.: Evolution of optimization structural shapes using genetic algorithm. J. Structural Engineering, ASCE 124(11), 1331–1338 (1998)

    Article  Google Scholar 

  31. Erbatur, F., Hasancebi, O., Tutuncil, I., Kihc, H.: Optimal design of planar and structures with genetic algorithms. Computers and Structures 75, 209–224 (2000)

    Article  Google Scholar 

  32. Sarma, K.C., Adeli, H.: Fuzzy genetic algorithm for optimization of steel structures. J. Structural Engineering, ASCE 126(5), 596–604 (2000)

    Article  Google Scholar 

  33. Haftka, R.T., Le Riche, R., Harrison, P.: Genetic algorithms for the design of composite panels. In: Grierson, D.E., Hajela, P. (eds.) Emergent computing methods in engineering design: Application of genetic algorithms and neural network, pp. 10–29. Springer, Berlin (1996)

    Google Scholar 

  34. Geem, Z.W., Kim, J.-H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  35. Pezeshk, S., Camp, C.V., Chen, D.: Design of nonlinear framed structures using genetic optimization. J. Struct. Engrg., ASCE 126(3), 382–388 (2000)

    Article  Google Scholar 

  36. Schmit Jr., L.A., Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12(5), 692–699 (1974)

    Article  Google Scholar 

  37. Schmit Jr., L.A., Miura, H.: Approximation concepts for efficient structural synthesis. NASA CR-2552, Washington, D. C (1976)

    Google Scholar 

  38. Venkayya, V.B.: Design of optimum structures. Computers and Structures 1(1-2), 265–309 (1971)

    Article  Google Scholar 

  39. Gellatly, R.A., Berke, L.: Optimal structural design. AFFDL-TR-70-165, Air Force Flight Dynamics Lab., Wright-Patterson AFB, OH (1971)

    Google Scholar 

  40. Dobbs, M.W., Nelson, R.B.: Application of optimality criteria to automated structural design. AIAA J. 14(10), 1436–1443 (1976)

    Article  Google Scholar 

  41. Rizzi, P.: Optimization of multiconstrained structures based on optimality criteria. In: AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials Conference, King of Prussia, PA (1976)

    Google Scholar 

  42. Khan, M.R., Willmert, K.D., Thornton, W.A.: An optimality criterion method for large-scale structures. AIAA J. 17(7), 753–761 (1979)

    Article  Google Scholar 

  43. John, K.V., Ramakrishnan, C.V., Sharma, K.G.: Minimum weight design of truss using improved move limit method of sequential linear programming. Computers and Structures 27(5), 583–591 (1987)

    Article  MATH  Google Scholar 

  44. Sunar, M., Belegundu, A.D.: Trust region methods for structural optimization using exact second order sensitivity. Int. J. Numerical Methods in Engineering 32, 275–293 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  45. Stander, N., Snyman, J.A., Coster, J.E.: On the robustness and efficiency of the S.A.M. algorithm for structural optimization. Int. J. Int. J. Numerical Methods in Engineering 38, 119–135 (1995)

    Article  MATH  Google Scholar 

  46. Xu, S., Grandhi, R.V.: Effective two-point function approximation for design optimization. AIAA J. 36(12), 2269–2275 (1998)

    Article  Google Scholar 

  47. Lamberti, L., Pappalettere, C.: Comparison of the numerical efficiency of different sequential linear programming based on algorithms for structural optimization problems. Computers and Structures 76, 713–728 (2000)

    Article  Google Scholar 

  48. Lamberti, L., Pappalettere, C.: Move limits definition in structural optimization with sequential linear programming - PartII: Numerical examples. Computers and Structures 81, 215–238 (2003)

    Article  MathSciNet  Google Scholar 

  49. Khot, N.S., Berke, L.: Structural optimization using optimality criteria methods. In: Atrek, E., Gallagher, R.H., Ragsdell, K.M., Zienkiewicz, O.C. (eds.) New directions in optimum structural design. John Wiley & Sons, New York (1984)

    Google Scholar 

  50. Imai, K., Schmit Jr., L.A.: Configuration optimization of trusses. J. Structural Division. ASCE 107(ST5), 745–756 (1981)

    Google Scholar 

  51. Sheu, C.Y., Schmit Jr., L.A.: Minimum weight design of elastic redundant trusses under multiple static load conditions. AIAA J. 10(2), 155–162 (1972)

    Article  Google Scholar 

  52. Templeman, A.B., Winterbottom, S.K.: Structural design by geometric programming. In: Second symposium on structural optimization, AGARD Conference, Preprint-123, Milan (1973)

    Google Scholar 

  53. Chao, N.H., Fenves, S.J., Westerberg, A.W.: Application of reduced quadratic programming technique to optimal structural design. In: Atrex, E., Gallagher, R.H., Radgsdell, K.M., Zienkiewicz, O.C. (eds.) New Directions in Optimum Structural Design. John Wiley, New York (1984)

    Google Scholar 

  54. Adeli, H., Kamal, O.: Efficient optimization of space trusses. Computers and Structures 24(3), 501–511 (1986)

    Article  MATH  Google Scholar 

  55. Saka, M.P.: Optimum design of pin-jointed steel structures with practical applications. J. Structural Engineering, ASCE 116(10), 2599–2620 (1990)

    Article  Google Scholar 

  56. Fadel, G.M., Clitalay, S.: Automatic evaluation of move-limits in structural optimization. Structural Optimization 6, 233–237 (1993)

    Article  Google Scholar 

  57. Berke, L., Khot, N.S.: Use of optimality criteria methods for large-scale systems. AGARD Lecture Series No. 70 on Structural Optimization AGARD-LS-70, 1–29 (1974)

    Google Scholar 

  58. Xicheng, W., Guixu, M.: A parallel iterative algorithm for structural optimization. Computer Methods in Applied Mechanics and Engineering 96, 25–32 (1992)

    Article  MATH  Google Scholar 

  59. Adeli, H., Park, H.-S.: Neurocomputing for design automation. CRC Press, Boca Raton (1998)

    Google Scholar 

  60. American Institute of Steel Construction (AISC), Manual of steel construction - allowable stress design. 9th edn., Chicago, Ill (1989)

    Google Scholar 

  61. Felix, J.E.: Shape optimization of trusses subjected to strength, displacement, and frequency constraints. Master’s Thesis, Naval Postgraduate School (1981)

    Google Scholar 

  62. Yang, J.P.: Development of genetic algorithm-based approach for structural optimization. PhD Thesis, Nanyang Technol. Univ., Singapore (1996)

    Google Scholar 

  63. Yang, J.P., Soh, C.K.: Structural optimization by genetic algorithms with tournament selection. J. Comp. In: Civ. Engrg., ASCE 11(3), 195–200 (1997)

    Article  Google Scholar 

  64. Vanderplaats, G.N., Moses, F.: Automated design of trusses for optimum geometry. J. Struct. Div., ASCE 98(3), 671–690 (1972)

    Google Scholar 

  65. Hansen, S.R., Vanderplaats, G.N.: Approximation method for configuration optimization of trusses. J. AIAA 28(1), 161–168 (1990)

    Article  Google Scholar 

  66. Adeli, H., Park, H.-S.: Hybrid CPN-neural dynamics model for discrete optimization of steel structures. Microcomputer Civil Engineering 11(5), 355–366 (1996)

    Article  Google Scholar 

  67. Park, H.-S., Sung, C.-W.: Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers. Comp. Struct. 80, 1305–1316 (2002)

    Article  Google Scholar 

  68. Xicheng, W., Guixu, M.: A parallel iterative algorithm for structural optimization. Computer Methods in Applied Mechanics and Engineering 96, 25–32 (1992)

    Article  MATH  Google Scholar 

  69. Geem, Z.W.: Novel derivative of harmony search algorithm for discrete design variables. Applied Mathematics and Computation 199(1), 223–230 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  70. Geem, Z.W.: Music-inspired harmony search algorithm: theory and applications. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, K.S. (2009). Standard Harmony Search Algorithm for Structural Design Optimization. In: Geem, Z.W. (eds) Harmony Search Algorithms for Structural Design Optimization. Studies in Computational Intelligence, vol 239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03450-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03450-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03449-7

  • Online ISBN: 978-3-642-03450-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics