Skip to main content

The Method of Small-Volume Expansions for Medical Imaging

  • Chapter
  • First Online:
Mathematical Modeling in Biomedical Imaging I

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1983))

Abstract

Inverse problems in medical imaging are in their most general form ill-posed. They literally have no solution. If, however, in advance we have additional structural information or supply missing information, then we may be able to determine specific features about what we wish to image with a satisfactory resolution and accuracy. One such type of information can be that the imaging problem is to find unknown small anomalies with significantly different parameters from those of the surrounding medium. These anomalies may represent potential tumors at early stage.

Over the last few years, the method of small-volume expansions has been developed for the imaging of such anomalies. The aim of this chapter is to provide a synthetic exposition of the method, a technique that has proven useful in dealing with many medical imaging problems. The method relies on deriving asymptotics. Such asymptotics have been investigated in the case of the conduction equation, the elasticity equation, the Helmholtz equation, the Maxwell system, the wave equation, the heat equation, and the Stokes system. A remarkable feature of this method is that it allows a stable and accurate reconstruction of the location and of some geometric features of the anomalies, even with moderately noisy data.

In this chapter we first provide asymptotic expansions for internal and boundary perturbations due to the presence of small anomalies. We then apply the asymptotic formulas for the purpose of identifying the location and certain properties of the shape of the anomalies. We shall restrict ourselves to conductivity and elasticity imaging and single out simple fundamental algorithms. We should emphasize that, since biological tissues are nearly incompressible, the model problem in elasticity imaging we shall deal with is the Stokes system rather than the Lam´e system. The method of small-volume expansions also applies to the optical tomography and microwave imaging. However, these techniques are not discussed here. We refer the interested reader to, for instance, [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ammari, An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume, SIAM J. Control Optim., 41 (2002), 1194–1211.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Mathématiques & Applications, Vol. 62, Springer-Verlag, Berlin, 2008.

    Google Scholar 

  3. H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557–1573.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Ammari, E. Bossy, V. Jugnon, and H. Kang, Mathematical modelling in photo-acoustic imaging, preprint.

    Google Scholar 

  5. H. Ammari, Y. Capdeboscq, H. Kang, and A. Kozhemyak, Mathematical models and reconstruction methods in magneto-acoustic imaging, Europ. J. Appl. Math., 20 (2009), 303–317.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Ammari, P. Garapon, H. Kang, and H. Lee, A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements, Quart. Appl. Math., 66 (2008), 139–175.

    MathSciNet  MATH  Google Scholar 

  7. H. Ammari, P. Garapon, L. Guadarrama Bustos, and H. Kang, Transient anomaly imaging by the acoustic radiation force, J. Diff. Equat., to appear.

    Google Scholar 

  8. H. Ammari, P. Garapon, and F. Jouve, Separation of scales in elasticity imaging: A numerical study, J. Comput. Math, to appear.

    Google Scholar 

  9. H. Ammari, R. Griesmaier, and M. Hanke, Identification of small inhomogeneities: asymptotic factorization, Math. of Comp., 76 (2007), 1425–1448.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Ammari, E. Iakovleva, H. Kang, and K. Kim, Direct algorithms for thermal imaging of small inclusions, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 4 (2005), 1116–1136.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Ammari, E. Iakovleva, and D. Lesselier, Two numerical methods for recovering small electromagnetic inclusions from scattering amplitude at a fixed frequency, SIAM J. Sci. Comput., 27 (2005), 130–158.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Ammari, E. Iakovleva, and D. Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597–628.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Ammari, E. Iakovleva, D. Lesselier, and G. Perrusson, A MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions, SIAM J. Sci. Comput., 29 (2007), 674–709.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Ammari and H. Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal., 34 (2003), 1152–1166.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, Vol. 1846, Springer-Verlag, Berlin, 2004.

    Google Scholar 

  16. H. Ammari and H. Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, J. Math. Anal. Appl., 296 (2004), 190–208.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Ammari and H. Kang, Reconstruction of elastic inclusions of small volume via dynamic measurements, Appl. Math. Opt., 54 (2006), 223–235.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Ammari and H. Kang, Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162, Springer-Verlag, New York, 2007.

    Google Scholar 

  19. H. Ammari, H. Kang, and H. Lee, A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids, J. Comp. Math., 25 (2007), 2–12.

    MathSciNet  Google Scholar 

  20. H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity, 67 (2002), 97–129.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Ammari and A. Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl., 82 (2003), 749–842.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Ammari, A. Kozhemyak, and D. Volkov, Asymptotic formulas for thermography based recovery of anomalies, Numer. Math.: TMA, 2 (2009), 18–42.

    MathSciNet  MATH  Google Scholar 

  23. H. Ammari, O. Kwon, J.K. Seo, and E.J. Woo, Anomaly detection in T-scan trans-admittance imaging system, SIAM J. Appl. Math., 65 (2004), 252–266.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Ammari and J.K. Seo, An accurate formula for the reconstruction of conductivity inhomogeneities, Adv. Appl. Math., 30 (2003), 679–705.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Assenheimer, O. Laver-Moskovitz, D. Malonek, D. Manor, U. Nahliel, R. Nitzan, and A. Saad, The T-scan technology: Electrical impedance as a diagnostic tool for breast cancer detection, Physiol. Meas., 22 (2001), 1–8.

    Article  Google Scholar 

  26. J. Bercoff, M. Tanter, and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping, IEEE Trans. Ultrasonics, Ferro., Freq. Control, 51 (2004), 396–409.

    Article  Google Scholar 

  27. J. Bercoff, M. Tanter, and M. Fink, The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force, IEEE Trans. Ultrasonics, Ferro., Freq. Control, 51 (2004), 1523–1536.

    Article  Google Scholar 

  28. M. Brühl, M. Hanke, and M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math., 93 (2003), 635–654.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Capdeboscq, F. De Gournay, J. Fehrenbach, and O. Kavian, An optimal control approach to imaging by modification, preprint.

    Google Scholar 

  30. Y. Capdeboscq and H. Kang, Improved Hashin-Shtrikman bounds for elastic moment tensors and an application, Appl. Math. Opt., 57 (2008), 263–288.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Capdeboscq and M.S. Vogelius, A general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math. Modelling Num. Anal., 37 (2003), 159–173.

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, Math. Modelling Num. Anal., 37 (2003), 227–240.

    Article  MathSciNet  MATH  Google Scholar 

  33. D.J. Cedio-Fengya, S. Moskow, and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements: Continuous dependence and computational reconstruction, Inverse Problems, 14 (1998), 553–595.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, 17 (2001), 591–595.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Cheney and D. Isaacson, Distinguishability in impedance imaging, IEEE Trans. Biomed. Engr., 39 (1992), 852–860.

    Article  Google Scholar 

  36. M. Cheney, D. Isaacson, and J.C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85–101.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Cheney, D. Isaacson, J.C. Newell, S. Simske, and J. Goble, NOSER: an algorithm for solving the inverse conductivity problem, Int. J. Imag. Syst. Technol., 22 (1990), 66–75.

    Article  Google Scholar 

  38. A.J. Devaney, Time reversal imaging of obscured targets from multistatic data, IEEE Trans. Antennas Propagat., 523 (2005), 1600–1610.

    Article  Google Scholar 

  39. M. Fink, Time-reversal acoustics, Contemp. Math., 408 (2006), 151–179.

    Article  MathSciNet  Google Scholar 

  40. A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rat. Mech. Anal., 105 (1989), 299–326.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Gisser, D. Isaacson, and J.C. Newell, Electric current tomography and eigenvalues, SIAM J. Appl. Math., 50 (1990), 1623–1634.

    Article  MathSciNet  MATH  Google Scholar 

  42. J.F. Greenleaf, M. Fatemi, and M. Insana, Selected methods for imaging elastic properties of biological tissues, Annu. Rev. Biomed. Eng., 5 (2003), 57–78.

    Article  Google Scholar 

  43. S. Haider, A. Hrbek, and Y. Xu, Magneto-acousto-electrical tomography, preprint.

    Google Scholar 

  44. D. Isaacson, Distinguishability of conductivities by electric current computed tomography, IEEE Trans. Medical Imag., 5 (1986), 91–95.

    Article  Google Scholar 

  45. D. Isaacson and M. Cheney, Effects of measurements precision and finite numbers of electrodes on linear impedance imaging algorithms, SIAM J. Appl. Math., 51 (1991), 1705–1731.

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Isaacson and E.L. Isaacson, Comments on Calderón’s paper: “On an inverse boundary value problem”, Math. Compt., 52 (1989), 553–559.

    MathSciNet  MATH  Google Scholar 

  47. V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, Vol. 127, Springer-Verlag, New York, 1998.

    Google Scholar 

  48. H. Kang and J.K. Seo, Layer potential technique for the inverse conductivity problem, Inverse Problems, 12 (1996), 267–278.

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Kang and J.K. Seo, Identification of domains with near-extreme conductivity: Global stability and error estimates, Inverse Problems, 15 (1999), 851–867.

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Kang and J.K. Seo, Inverse conductivity problem with one measurement: Uniqueness of balls in R 3, SIAM J. Appl. Math., 59 (1999), 1533–1539.

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Kang and J.K. Seo, Recent progress in the inverse conductivity problem with single measurement, in Inverse Problems and Related Fields, CRC Press, Boca Raton, FL, 2000, 69–80.

    Google Scholar 

  52. S. Kim, O. Kwon, J.K. Seo, and J.R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance imaging, SIAM J. Math. Anal., 34 (2002), 511–526.

    Article  MathSciNet  MATH  Google Scholar 

  53. Y.J. Kim, O. Kwon, J.K. Seo, and E.J. Woo, Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography, Inverse Problems, 19 (2003), 1213–1225.

    Article  MathSciNet  MATH  Google Scholar 

  54. O. Kwon and J.K. Seo, Total size estimation and identification of multiple anomalies in the inverse electrical impedance tomography, Inverse Problems, 17 (2001), 59–75.

    Article  MathSciNet  MATH  Google Scholar 

  55. O. Kwon, J.K. Seo, and J.R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one measurement, Comm. Pure Appl. Math., 55 (2002), 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  56. O. Kwon, J.R. Yoon, J.K. Seo, E.J. Woo, and Y.G. Cho, Estimation of anomaly location and size using impedance tomography, IEEE Trans. Biomed. Engr., 50 (2003), 89–96.

    Article  Google Scholar 

  57. R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random composites. J. Mech. Phys. Solids, 41 (1993), 809–833.

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Manduca, T.E. Oliphant, M.A. Dresner, J.L. Mahowald, S.A. Kruse, E. Amromin, J.P. Felmlee, J.F. Greenleaf, and R.L. Ehman, Magnetic resonance elastography: non-invasive mapping of tissue elasticity, Medical Image Analysis, 5 (2001), 237–254.

    Article  Google Scholar 

  59. A. Montalibet, J. Jossinet, A. Matias, and D. Cathignol, Electric current generated by ultrasonically induced Lorentz force in biological media, Medical Biol. Eng. Comput., 39 (2001), 15–20.

    Article  Google Scholar 

  60. R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca, and R.L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves, Science, 269 (1995), 1854–1857.

    Article  Google Scholar 

  61. T.D. Mast, A. Nachman, and R.C. Waag, Focusing and imagining using eigenfunctions of the scattering operator, J. Acoust. Soc. Am., 102 (1997), 715–725.

    Article  Google Scholar 

  62. C. Prada, J.-L. Thomas, and M. Fink, The iterative time reversal process: Analysis of the convergence, J. Acoust. Soc. Amer., 97 (1995), 62–71.

    Article  Google Scholar 

  63. J.K. Seo, O. Kwon, H. Ammari, and E.J. Woo, Mathematical framework and anomaly estimation algorithm for breast cancer detection using TS2000 configuration, IEEE Trans. Biomedical Engineering, 51 (2004), 1898–1906.

    Article  Google Scholar 

  64. R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography, Mag. Res. Med., 53 (2005), 372–387.

    Article  Google Scholar 

  65. R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink, Viscoelastic shear properties of in vivo breast lesions measured by MR elastography, Mag. Res. Imag., 23 (2005), 159–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Ammari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ammari, H., Kang, H. (2009). The Method of Small-Volume Expansions for Medical Imaging. In: Ammari, H. (eds) Mathematical Modeling in Biomedical Imaging I. Lecture Notes in Mathematics(), vol 1983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03444-2_3

Download citation

Publish with us

Policies and ethics