Skip to main content

Abstract

Following the history of lasers and, in parallel, the applications in medicine demonstrates the continuous improvement of insight into laser reactions and development of devices. Understanding the characteristics of photons and light is the basis for all applications in medical diagnosis and therapy. Knowledge about the physical principle of lasers will convince you that there is no mystery behind lasers. Lasers can be designed in different ways and thus be optimised to the intended use. Laser radiation, depending on the wavelength and the mode of operation, is a powerful tool to treat patients, but it also can be dangerous if safety instructions are ignored. An overview about the different types of medical lasers actually on the market facilitates the right choice of a laser system for the specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basov NG, Danilychev VA, Popov YM. Stimulated emission in the vacuum ultraviolet region. Sov J Quantum Electron. 1971;1:18–22.

    Article  Google Scholar 

  2. Beaulieu AJ. Transversely excited atmospheric pressure CO2 lasers. Appl Phys Lett. 1970;16:504–5.

    Article  CAS  Google Scholar 

  3. Demtröder W. Atoms, molecules and photons. New York: Springer; 2006.

    Google Scholar 

  4. Diels JC, Rudolph W. Ultrashort laser pulse phenomena. New York: Academic Press; 2006.

    Google Scholar 

  5. Einstein A. Zur Quantentheorie der Strahlung. Phys Zeitschr. 1917;18:121–8.

    CAS  Google Scholar 

  6. Elhilali M, Elzayat EA. Laser prostatic surgery: an update. Afr J Urol. 2008;14:1–14.

    Article  Google Scholar 

  7. Frank F, Wondrazek F. Erbium:YAG laser. In: Berlien HP, Müller GJ, editors. Applied laser medicine. Berlin: Springer; 2003.

    Google Scholar 

  8. Gross H. Handbook of optical systems, vol. 4. (Materials) New York: Wiley; 2005.

    Book  Google Scholar 

  9. Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO. Coherent light emission from GaAs junctions. Phys Rev Lett. 1962;9:366–9.

    Article  CAS  Google Scholar 

  10. Hecht J. Laser pioneers. New York: Academic Press; 1992.

    Google Scholar 

  11. Hoffmann RM. Laser prostatectomy versus transurethral resection for treating benign prostatic obstruction: a systematic review. J Urol. 2003;169:210–5.

    Article  Google Scholar 

  12. Ivanenko MM, Hering P. Wet bone ablation with mechanically Q-switched high-repetition-rate CO2 laser. Appl Phys B. 1998;67:395–7.

    Article  CAS  Google Scholar 

  13. Johnson DE. Use of the holmium:YAG laser in urology. Lasers Surg Med. 1992;12:353–63.

    Article  CAS  PubMed  Google Scholar 

  14. Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–4.

    Article  Google Scholar 

  15. Moulton PF. Spectroscopic and laser characterisation of Ti:Al2O3. J Opt Soc Am B. 1986;3:125–33.

    Article  CAS  Google Scholar 

  16. Nair LG. Dye lasers. Prog Quantum Electron. 1982;7:153–268.

    Article  CAS  Google Scholar 

  17. Pearle MS, Drach GW, Roehrborn CG. Safety and efficacy of the alexandrite laser for the treatment of renal and ureteral calculi. Urology. 1998;51:33–8.

    Article  CAS  PubMed  Google Scholar 

  18. Pollack SA, Chang DB. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2 and CaF2 crystals. J Appl Phys. 1988;64:2885–93.

    Article  CAS  Google Scholar 

  19. Pollnau M, Jackson SD. Erbium 3-µm fiber lasers. IEEE J Sel Top Quantum Electron. 2001;7:30–40.

    Article  CAS  Google Scholar 

  20. Riehle F. Frequency standards – basics and applications. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  21. Saleh BEA, Teich MC. Fundamentals of photonics. In: Wiley series in pure and applied optics. New York: Wiley; 2007.

    Google Scholar 

  22. Schawlow AL, Townes CH. Infrared and optical masers. Phys Rev. 1958;112:1940–9.

    Article  CAS  Google Scholar 

  23. Temelkuran B, Hart SD, Benoit G, Joannopoulos JD, Fink Y. Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission. Nature. 2002;420:650–3.

    Article  CAS  PubMed  Google Scholar 

  24. Townes CH. Theodore H. Maiman (1927–2007). Maker of the first laser. Nature. 2007;447:654.

    Article  PubMed  Google Scholar 

  25. Wendt-Nordahl G, Huckele S, Honeck P, et al. Systematic evaluation of a recent introduced 2-µm continuous-wave thulium laser for vaporesection of the prostate. J Endourol. 2008;22:1041–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steiner, R. (2011). Basic Laser Physics. In: Raulin, C., Karsai, S. (eds) Laser and IPL Technology in Dermatology and Aesthetic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03438-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03438-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03437-4

  • Online ISBN: 978-3-642-03438-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics