Skip to main content

Vibronic Polarons and Electric Current Generation by a Berry Phase in Cuprate Superconductors

  • Chapter
  • First Online:
The Jahn-Teller Effect

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 97))

Abstract

High temperature superconductivity in cuprates occurs upon hole doping in half-filled antiferromagnetic insulating parent compounds. This insulating state is often called, a “Mott insulator” state, in which strong on-site Coulomb repulsion is the origin of the insulating behavior. Superconductivity occurs upon hole (or electron) doping in this state. In addition to the strong on-site Coulomb repulsion, a number of experimental and theoretical results indicate that strong hole-lattice interactions are present; the interactions are so strong that doped-holes become small polarons at low temperatures. In this review, we discuss the small polaron formation and its consequences in the superconductivity in cuprates. First, we will present some experimental and theoretical results that indicate the presence of strong interactions between doped-holes and the underlying lattice; especially, it is worth mentioning that a recent EXAFS experiment on La1. 85Sr0. 15Cu1 − x M x O4 (M=Mn, Ni, Co) reveals a direct connection between the local lattice distortion and superconductivity. When small polarons are formed, the mobility of the holes becomes very small; then, the system behaves as an “effectively half-filled Mott insulator (EHMI)” to an external perturbation whose interaction time is much shorter than the hole-hopping life-time. We argue that this EHFMI state is adequate for explaining the magnetic excitation spectrum in the cuprate; actually, the “hourglass-shaped magnetic excitation spectrum” is explained due to spin-wave excitations in the presence of spin–vortices with their centers at hole-occupied sites. The spin-wave excitations are composed of two types: the first (Mode I) is the one exhibits antiferromagetic dispersion for high energy excitations, and the other (Mode II), which is a novel one, is the one has a sharp commensurate peak at the maximum excitation energy, and a broadened dispersion at energies below; this novel spin-wave excitations explain the Drude-like peak in the optical conductivity. Next, we will present a novel current generation mechanism that is compatible with the small polaron and spin–vortex formations. The unit of the current is a loop current around each spin–vortex; and a macroscopic current is generated as a collection of loop currents. The existence of such loop currents in the cuprate is supported by the fact that the enhanced Nernst signal observed in the pseudogap phase is explained by the flow of the loop currents. Lastly, we present an implication of the new current generation mechanism in the cuprate superconductivity; we will show that the superconducting transition in the underdoped cuprate is explained as an order–disorder transition of the loop currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B64, 189 (1986)

    Article  Google Scholar 

  2. N.F. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor & Francis, London, 1990)

    Google Scholar 

  3. S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, S. Tajima, Phys. Rev. B 43, 7942 (1991)

    Article  CAS  Google Scholar 

  4. D. Mihailovic, C.M. Foster, K. Voss, A.J. Heeger, Phys. Rev. B 42, 7989 (1990)

    Article  CAS  Google Scholar 

  5. Y. Ando, A.N. Lavrov, S. Komiya, K. Segawa, X.F. Sun, Phys. Rev. Lett. 87, 017001 (2001)

    Article  CAS  Google Scholar 

  6. S.M. Hayden, H.A. Mook, P. Dai, T.G. Perring, F. Doğan, Nature 429, 531 (2004)

    Article  CAS  Google Scholar 

  7. J.M. Tranquada, H. Woo, T.G. Perring, H. Goka, G.D. Gu, G. Xu, M. Fujita, K. Yamada, Nature 429, 534 (2004)

    Article  CAS  Google Scholar 

  8. J.M. Tranquada, in Handbook of High-Temperature Superconductivity, ed. by J.R. Schrieffer, J.S. Brooks (Springer, Berlin, 2007), p. 260

    Google Scholar 

  9. M.R. Norman, H. Ding, N. Randeria, J.C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, Nature (London) 392, 157 (1998)

    Google Scholar 

  10. T. Yoshida, X.J. Zhou, T. Sasagawa, W.L. Yang, P.V. Bogdanov, A. Lanzara, Z. Hussain, T. Mizokawa, A. Fujimori, H. Eisaki, Z.-X. Shen, T. Kakeshita, S. Uchida, Phys. Rev. Lett. 91, 027001 (2003)

    Article  CAS  Google Scholar 

  11. Y. Wang, Z.A. Xu, T. Kakeshita, S. Uchida, S. Ono, Y. Ando, N.P. Ong, Phys. Rev B 64, 224519 (2001). 257003 (2002)

    Google Scholar 

  12. Y. Wang, L. Li, M.J. Naughton, G.D. Gu, S. Uchida, N.P. Ong, Phys. Rev. Lett. 88, 247002 (2005)

    Article  Google Scholar 

  13. Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006)

    Article  Google Scholar 

  14. A. Bianconi, N.L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, T. Ito, Phys. Rev. Lett. 76, 3412 (1996)

    Article  CAS  Google Scholar 

  15. S. Miyaki, K. Makoshi, H. Koizumi, J. Phys. Soc. Jpn. 77, 034702 (2008)

    Article  Google Scholar 

  16. C.J. Zhang, H. Oyanagi, Phys. Rev. B 79, 094521 (2009)

    Article  Google Scholar 

  17. M. Berciu, S. John, Phys. Rev. B 69, 224515 (2004)

    Article  Google Scholar 

  18. H. Koizumi, J. Phys. Soc. Jpn. 77, 104704 (2008)

    Article  Google Scholar 

  19. M.V. Berry, Proc. Roy. Soc. London A 392, 45 (1984)

    Article  Google Scholar 

  20. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems (Springer, Berlin, 2003)

    Google Scholar 

  21. H.C. Longuet-Higgins, U. Öpik, M.H. Pryce, R.A. Sack, Proc. Roy. Soc. London A 244, 1 (1958)

    Article  CAS  Google Scholar 

  22. C.A. Mead, D. Truhlar, J. Chem. Phys. 70, 6090 (1982)

    Article  Google Scholar 

  23. H. Koizumi, J. Phys. Soc. Jpn. 77, 123708 (2008)

    Article  Google Scholar 

  24. H. Koizumi, J. Phys. Soc. Jpn. 77, 034712 (2008)

    Article  Google Scholar 

  25. H. Koizumi, to appear in J. Chem. Phys. A (2009)

    Google Scholar 

  26. H. Koizumi, Y. Takada, Phys. Rev. B 65, 153104 (2002)

    Article  Google Scholar 

  27. H. Sumi, J. Phys. Soc. Jpn. 33, 327 (1972)

    Article  CAS  Google Scholar 

  28. T. Matsuzaki, M. Ido, N. Momono, R.M. Dipasupil, T. Nagata, A. Sakai, M. Oda, J. Phys. Chem. Solids 62, 29 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Koizumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koizumi, H. (2009). Vibronic Polarons and Electric Current Generation by a Berry Phase in Cuprate Superconductors. In: Köppel, H., Yarkony, D., Barentzen, H. (eds) The Jahn-Teller Effect. Springer Series in Chemical Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03432-9_27

Download citation

Publish with us

Policies and ethics