Skip to main content

Orbital Ordering Versus the Traditional Approach in the Cooperative Jahn–Teller Effect: A Comparative Study

  • Chapter
  • First Online:
The Jahn-Teller Effect

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 97))

Abstract

In Jahn–Teller crystals, at low temperatures, symmetry-breaking lattice distortion creates an ordering of otherwise degenerate atomic orbitals. In the theory of cooperative Jahn–Teller effect, the traditional approach includes solving the complex problem of coupled dynamics of the respective electron-vibrational system. During last two decades, an alternative way of treating the cooperative Jahn–Teller effect attracts increasing attention. It replaces ligand-mediated intercell coupling by an effective intersite orbital exchange of electron-degenerate atoms. Known as the orbital ordering approach, it explores stable ordered patterns due to the exchange coupling of orbital pseudo spins. The respective symmetry break of crystal lattice structure is treated as a secondary effect resulting from the orbital ordering. This paper examines some approximations implicitly included in the orbital ordering approach and compares it to the traditional theory of the Jahn–Teller effect. As the orbital ordering approach replaces ligand-mediated intersite coupling by an orbital exchange, the fundamental effect of dynamic strengthening chemical bonds with low-symmetry lattice distortions is lost. This may bring to a wrong conclusion about possible bond-ordered structures. On the other hand, a number of cases are outlined when both approaches yield close results. Based on these estimates, conclusions regarding applicability of the orbital ordering approach are derived and some general recommendations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.B. Bersuker, The Jahn-Teller Effect. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  2. I.B. Bersuker, V.Z. Polinger, Vibronic Interactions in Molecules and Crystals. Springer Series in Chemical Physics. vol. 49 (Springer-Verlag, Berlin-Heidelberg-New York, 1989)

    Google Scholar 

  3. R. Englman, The Jahn-Teller Effect in Molecules and Crystals. (Wiley-Interscience, London, 1972)

    Google Scholar 

  4. R. Englman, B. Halperin, Phys. Rev. B. (1970). doi:10.1103/PhysRevB.2.75

    Google Scholar 

  5. G.A. Gehring, K.A. Gehring, Rept. Prog. Phys. (1975). doi:10.1088/0034–4885/38/1/001

    Google Scholar 

  6. M.D. Kaplan, The Jahn-Teller-Effect. (2009)

    Google Scholar 

  7. M.D. Kaplan, B.G. Vekhter, (Plenum Press, New York-London, 1995)

    Google Scholar 

  8. J. Kanamori, J. Appl. Phys. (Suppl.). 31, No.5, 14S–23S (1960)

    Google Scholar 

  9. K.I. Kugel, D.I. Khomskii, Sov. Phys. – Uspekhi. 25, 231–256 (1982)

    Google Scholar 

  10. D.I. Khomskii, Phys. Scr. 72, CC8–CC14 (2005)

    Google Scholar 

  11. G. Khaliullin, Prog. Theor. Phys. Suppl. (Jpn). 160, 155–202 (2005)

    Google Scholar 

  12. L.D. Landau, E.M. Lifshits, Quantum Mechanics: Non-Relativistic Theory. 3rd edn. (Elsevier Science, 2003)

    Google Scholar 

  13. R. Janes, E. Moore, Metal-Ligand Bonding. (Royal Society of Chemistry/Open University, Great Britain, 2004)

    Google Scholar 

  14. H.C. Longuet-Higgins, U. Opik, M.H.L. Pryce, R.A. Sack, Proc. Roy Soc. A. 244, 1–16 (1958)

    Article  CAS  Google Scholar 

  15. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  16. D. Reinen, C. Friebel, in Structural Problems. Structure and Bonding, vol. 37, (Springer-Verlag, Berlin-Heidelberg-New York, 1979), pp. 1–160

    Google Scholar 

  17. D. Reinen, M. Atanasov, Magn. Resonance Rev. 15, 167–139 (1991)

    Google Scholar 

  18. T.V. Ramakrishnan, 71st Annual Meeting at Tiruchirappalli, Indian Academy of Scien- ces Web.http://www.ias.ac.in/meetings/annmeet/71am_talks/tvramakrishnan/img0.html (2005). Accessed 23 December 2008

  19. K.I. Kugel, D.I. Khomskii, Sov. Phys. – JETP. 37, 725–730 (1973)

    Google Scholar 

  20. N. Binggeli, M. Altarelli, Phys. Rev. B. (2004). doi:10.1103/PhysRevB.70.085117

    Google Scholar 

  21. S.Yu. Shashkin, W.A. Goddard III, Phys. Rev. B. (1986). doi:10.1103/PhysRevB.33.1353

    Google Scholar 

  22. J.E. Medvedeva, M.A. Korotin, V.I. Anisimov, A.J. Freeman, Phys. Rev. B. (2002). doi:10.1103/PhysRevB.65.172413

    Google Scholar 

  23. A.E. Nikiforov, S.Y.u. Shashkin, Phys. Solid State. 38, 1880–1884 (1996)

    Google Scholar 

  24. E. Pavarini, E. Koch, A.I. Lichtenstein, Rev. Lett. (2008). doi:10.1103/PhysRevLett. 101.266405

    Google Scholar 

  25. I. Leonov, N. Binggeli, D.m. Korotin, V.I. Anisimov, N. Stojic, D. Vollhardt, Phys. Rev. Lett. (2008). doi:10.1103/PhysRevLett.101.096405

    Google Scholar 

  26. K.I. Kugel, A.L. Rakhmanov, A.O. Sboychakov, N. Poccia, A. Bianconi, Phys. Rev. B. (2008). doi:10.1103/PhysRevB.78.165124

    Google Scholar 

  27. K.I. Kugel, A.L. Rakhmanov, A.O. Sboychakov, D.I. Khomskii, Phys. Rev. B. (2008). doi:10.1103/PhysRevB.78.155113

    Google Scholar 

  28. M.Yu. Kagan, A.V. Klaptsov, I.V. Brodskii, K.I. Kugel, A.O. Sboichakov, A.L. Rakhmanov, Phys. Usp. (2003). doi:10.1070/PU2003v046n08ABEH001649

    Google Scholar 

  29. M.Yu. Kagan, K.I. Kugel, A.L. Rakhmanov, D.I. Khomskii, Low Temp. Phys. (2001). doi:10.1063/1.1399195

    Google Scholar 

  30. A.O. Sboychakov, K.I. Kugel, A.L. Rakhmanov, Phys. Rev. B. (2007). doi:10.1103/ PhysRevB.76.195113.

    Google Scholar 

  31. A.O. Sboychakov, K.I. Kugel, A.L. Rakhmanov, Phys. Rev. B. (2006). doi:10.1103/ PhysRevB.74.014401

    Google Scholar 

  32. M.Y.u. Kagan, K.I. Kugel, A.L. Rakhmanov, K.S. Pazhitnykh, J. Phys. Cond. Matter. (2006). doi:10.1088/0953–8984/18/48/018

    Google Scholar 

  33. K.I. Kugel, A.L. Rakhmanov, A.O. Sboychakov, M.Y.u. Kagan, S.L. Ogarkov, Physica B. (2008). doi:10.1016/j.physb.2007.10.148

    Google Scholar 

  34. D.I. Khomskii, K.I. Kugel, Phys. Rev. (2003). doi:10.1103/PhysRevB.67.134401; J. Magn. Magn. Mat. (2003). doi:10.1016/S0304–8853(02)01044–2

    Google Scholar 

  35. D.V. Efremov, D.I. Khomskii, Phys. Rev. B. (2005). doi:10.1103/PhysRevB.72.012402

    Google Scholar 

  36. M.V. Mostovoy, D.I. Khomskii, Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.92.167201; Phys. Rev. Lett. (2002). doi:10.1103/PhysRevLett.89.227203

    Google Scholar 

  37. A. Daoud-Aladine, J. Rodrígues-Carvajal, L. Pinsard-Gaudart, M.T. Fernández-Díaz, A. Revcolevschi, Phys. Rev. Lett. (2002). doi:10.1103/PhysRevLett.89.097205

    Google Scholar 

  38. E. Saitoh, S. Okamoto, K.T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, Y. Tokura, Nature (2001). doi:10.1038/35065547

    Google Scholar 

  39. S. Jandl, J. Laverdi re, A.A. Mukhin, V.Y.u. Ivanov, A.M. Balbashov, Physica B. (2006). doi:10.1016/J..physb.2006.01.008

    Google Scholar 

  40. K.P. Schmidt, M. Grüninger, G.S. Uhrig, Phys. Rev. B. (2007). doi:10.1103/ PhysRevB.76.075108

    Google Scholar 

  41. K. Kikoin, O. Entin-Wohlman, V. Fleurov, A. Aharony, J. Magn. Magn. Mat. (2003). doi:10.1016/J..J. mmm.2003.12.1066

    Google Scholar 

  42. Y. Tanaka, A.Q.R. Baron, Y.J. Kim, K.J. Thomas, J.P. Hill, Z. Honda, F. Iga, S. Tsutsui, S. Ishikawa, C.S. Nelson, New J. Phys. (2004). doi: 10.1088/1367–2360/6/1/161

    Google Scholar 

  43. A. Yamasaki, F. Feldbacher, Y.F. Yang, O.K. Andersen, K. Held, Phys. Rev. Lett. (2006). doi: 10.1103/PhysRevLett.96.166401

    Google Scholar 

  44. Y.F. Yang, K. Held, Phys. Rev. B. (2007). doi: 10.1103/PhysRevB.76.212401

    Google Scholar 

  45. A.B. Harris, T. Yildirim, A. Aharony, O. Entin-Wohlman, I. Korenblit, Phys. Rev. B. (2004). doi: 10.1103/PhysRevB.69.035107

    Google Scholar 

  46. A. Aharony, O. Entin-Wohlman, I.Y.a. Korenblit, A.B. Harris, T. Yildirim, New J. Phys. (2005). doi:10.1088/1367–2630/7/1/049

    Google Scholar 

  47. D.V. Efremov, J.v.d. Brink, D.I. Khomskii, Nat. Mater. (UK). (2004). doi:10.1038/nmat1236

    Google Scholar 

  48. D.V. Efremov, J.v.d. Brink, D.I. Khomskii, Physica B. (2005). doi:10.1016/ j.physb.2005.01.440

    Google Scholar 

  49. K.I. Kugel, K.I., Sboychakov, A.O., Khomskii, D.I., J. Supercond. Nov. Magn. (2009). doi:10.1007/s10948–008–0380–6

    Google Scholar 

  50. D.I. Khomskii, Physics. (2009). doi:10.1103/Physics.2.20; J. Magn. Magn. Mater. (Netherlands) (2006). doi:10.1016/j.jmmm.206.01.238

    Google Scholar 

  51. I.B. Bersuker, Ferroelectrics 164, 75–100 (1995)

    CAS  Google Scholar 

  52. J.J. Borrás-Almenar, J.M. Clemente-Juan,, E. Coronado, E. Palii, A.V., Tsukerblat, B.S.:, Chem. Phys. (2000). doi:10.1016/S0301–0104(00)00029-X

    Google Scholar 

  53. J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, A.V. Palii, B.S. Tsukerblat, Chem. Phys. (2001). doi:10.1016/S0301–0104(01)00497–9; Chem. Phys. (2001). doi:10.1016/ S0301–0104(01)00498–0

    Google Scholar 

  54. J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, A.V. Palii, B.S. Tsukerblat, J. Solid St. Chem. (2001). doi:10.1006/jssc.2001.9156

    Google Scholar 

  55. B.S. Tsukerblat, S. Klokishner, A. Palii, Jahn-Teller Effect in molecular magnetism: an overview. Present book, (Springer, Heidelberg, 2009)

    Google Scholar 

  56. A.V. Palii, O.S. Reu, S.M. Ostrovsky, S.I. Klokishner, B.S. Tsukerblat, Z.M. Sun, J.G. Mao, A.V. Prosvirin, H.H. Zhao, K.R. Dunbar, J. Am. Chem Soc. (2008). doi:10.1021/J. a8050052

    Google Scholar 

  57. W.J.A. Maaskant, W.G. Haije, J. Phys. C, Solid State Phys. (1986). doi:10.1088/0022–3719/19/27/007

    Google Scholar 

  58. P. Ghigna, A. Carollo, G. Flor, L. Malavasi, G.S. Peruga, J. Phys. Chem B. 109, 4365–4372 (2005)

    CAS  Google Scholar 

  59. I.B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds. (Wiley, New York, 1996)

    Google Scholar 

  60. S. Muramatsu, N. Sakamoto, J. Phys. Soc. Jpn. (1978). doi:10.1143/J. PSJ..44.1640

    Google Scholar 

  61. F.S. Ham, in Electron Paramagnetic Resonance, ed. by S. Gecshwind (Plenum Press, New York, London, 1972), pp. 1–119

    Google Scholar 

  62. M.C.M. O’Brien, Proc. R. Soc. A. 281, 323–339 (1964)

    Article  Google Scholar 

  63. K.H. Höck, G. Schröder, H. Thomas, Physik B Cond Matter. (1978). doi:10.1007/BF01321093

    Google Scholar 

  64. W.J. Crama, W.J.A. Maaskant, Physica B & C. (1983). doi:10.1016/0378–4363(83)90145–6

    Google Scholar 

  65. A.J. Millis, Phys. Rev. B. (1996). doi:10.1103/PhysRevB.53.8434; also, see M A. Ahmed, G.A. Gehring, Phys. Rev. B (2006). doi:10.1103/PhysRevB.74.014420

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank I.B. Bersuker for suggesting this study and for many stimulating discussions. I would also like to thank K. I. Kugel, D. I. Khomskii, R. Englman, A. E. Nikiforov and B.S. Tsukerblat for reading the manuscript, its thorough critical analysis, helpful discussions, and pointing my attention to different papers directly and indirectly related to the subject of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Polinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Polinger, V. (2009). Orbital Ordering Versus the Traditional Approach in the Cooperative Jahn–Teller Effect: A Comparative Study. In: Köppel, H., Yarkony, D., Barentzen, H. (eds) The Jahn-Teller Effect. Springer Series in Chemical Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03432-9_21

Download citation

Publish with us

Policies and ethics