Skip to main content

On the Vibronic Interactions in Aromatic Hydrocarbon Radicals and Radical Cations

  • Chapter
  • First Online:
The Jahn-Teller Effect

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 97))

Abstract

The study of the fate of electronically excited radical and radical cation of aromatic hydrocarbons is an emerging topic in modern chemical dynamics. Observations like low quantum yield of fluorescence and photostability are of immediate concern to unravel the mechanism of ultrafast nonradiative internal conversion dynamics in such systems. The radical cations of polycyclic aromatic hydrocarbons (PAHs) have received considerable attention in this context and invited critical measurements of their optical spectroscopy in a laboratory, in striving to understand the enigmatic diffuse interstellar bands (DIBs).

The Born–Oppenheimer (BO) approximation breaks down owing to the feasibility of crossings of electronic states of polyatomic molecules. These crossings lead to conical intersections of electronic potential energy surfaces (PESs), which are proved to be the bottleneck in the photophysical/chemical processes in those systems. Understandably, a concurrent treatment of electronic and nuclear motions is required to explore the excited state dynamics of polyatomic systems. Motivated by the new experimental measurements, we recently carried out ab initio quantum dynamical studies on phenyl radical (Ph) and phenylacetylene radical cation (PA●+) and established nonadiabatic interactions in their low-lying electronic states. These are the derivatives of the Jahn–Teller active benzene molecule, and are precursors of formation of PAHs. Employing a general vibronic coupling scheme, the ultrafast decay of their electronic states through successive conical intersections was studied by us recently.More specifically, the electronic ground \(\widetilde{X}^2 A_1\) state of Ph is energetically well separated from its excited \(\widetilde{A}^2 B_1\) and \(\widetilde{B}^1 A_2\) states, and the nuclear dynamics in this state followthe adiabatic BO mechanism. In contrast, the \(\widetilde{A}^2 B_1\) and \(\widetilde{B}^2 A_2\) states are very close in energy (~0:57 eV spaced vertically at the equilibrium configuration of the reference phenide anion) and low-lying conical intersections are discovered which drive the nuclear dynamics via nonadiabatic paths. An ultrafast nonradiative decay rate of ~30 fs of the \(\widetilde{B}\) state is estimated. In PA●+ both the long-lived and short-lived electronic states are discovered. The resolved structures of the vibronic bands are compared with the experimental photoelectron, mass analyzed threshold ionization and photoinduced Rydberg ionization spectroscopy data. The diffused structure of vibronic band for the \(\widetilde{A}\) state of the radical cation is attributed to an ultrafast decay (~20 fs) to the electronic ground state. Benchmark ab initio quantum dynamical studies are carried out for the prototypical naphthalene and anthracene radical cations of the PAH family aiming to understand the vibronic interactions and ultrafast decay of their low-lying electronic states. The broadening of vibronic bands and ultrafast internal conversion through conical intersections in the D 0D 1D 2 electronic states of these species is examined in conjunction with the experimental results. The results demonstrate the crucial role of electronic nonadiabatic interactions to understand their low quantum yield of fluorescence and photostability and adds to the understanding of DIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. von Neumann, E. Wigner, Phys. Z. 30, 467–470 (1929)

    Google Scholar 

  2. W. Domcke, D.R. Yarkony, H. Köppel (eds.), Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004)

    Google Scholar 

  3. M. Born, R. Oppenheimer, Ann. Phys. 84, 457–484 (1927)

    CAS  Google Scholar 

  4. H.A. Jahn, E. Teller, Proc. R. Soc. London A, 161, 220–235 (1937)

    CAS  Google Scholar 

  5. G. Herzberg, H.C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77–82 (1963)

    Google Scholar 

  6. T. Carrington, Acc. Chem. Res. 7, 20–25 (1974)

    CAS  Google Scholar 

  7. H. Köppel, W. Domcke, L.S. Cederbaum, Adv. Chem. Phys. 57, 59–246 (1984)

    Google Scholar 

  8. D.R. Yarkony, Acc. Chem. Res. 31, 511–518 (1998)

    CAS  Google Scholar 

  9. R.F. Gunion, M.K. Gills, M.L. Polak, W.C. Lineberger, Int. J. Mass Spectrom. Ion Process 117, 601–620 (1992)

    CAS  Google Scholar 

  10. C.H. Kwon, H.L. Kim, M.S. Kim, J. Chem. Phys. 116, 10361–10371 (2002)

    CAS  Google Scholar 

  11. C.H. Kwon, H.L. Kim, M.S. Kim, J. Chem. Phys. 119, 215–223 (2003)

    CAS  Google Scholar 

  12. C.H. Kwon, H.L. Kim, M.S. Kim, J. Phys. Chem. A 107, 10969–10975 (2003)

    CAS  Google Scholar 

  13. H. Xu, P.M. Johnson, T.J. Sears, J. Phys. Chem. A 110, 7822–7825 (2006)

    CAS  Google Scholar 

  14. Y.Y. Youn, C.H. Kwon, J.C. Choe, M.S. Kim, J. Chem. Phys. 117, 2538–2545 (2002)

    CAS  Google Scholar 

  15. M.S. Kim, C.H. Kwon, J.C. Choe, J. Chem. Phys. 113, 9532–9539 (2000)

    CAS  Google Scholar 

  16. L. Zhao, R. Lian, I.A. Shkrob, R.A. Crowell, S. Pommeret, E.L. Chronister, A.D. Liu, A.D. Trifunac, J. Phys. Chem. A. 108, 25–31 (2004)

    CAS  Google Scholar 

  17. M. Döscher, H. Köppel, P.G. Szalay, J. Chem. Phys. 117, 2645–2656 (2002)

    Google Scholar 

  18. E. Gindensperger, I. Bâldea, J. Franz, H. Köppel, Chem. Phys. 338, 207–219 (2007)

    CAS  Google Scholar 

  19. V. Sivaranjana Reddy, T.S. Venkatesan, S. Mahapatra, J. Chem. Phys. 126, 074306(1–14) (2007)

    Google Scholar 

  20. V. Sivaranjana Reddy, S. Mahapatra, J. Chem. Phys. 128, 091104(1–4) (2008)

    Google Scholar 

  21. V. Sivaranjana Reddy, S. Mahapatra, J. Chem. Phys. 130, 124303(1–14) (2009)

    Google Scholar 

  22. S. Ghanta, S. Mahapatra, (unpublished data)

    Google Scholar 

  23. C.E. Crespo-Hernádez, B. Cohen, P.M. Hare, B. Kohler, Che. Rev. 104, 1977–2019 (2004)

    Google Scholar 

  24. A.J.-E. Otterstedt, J. Chem. Phys. 58, 5716–5725 (1973)

    CAS  Google Scholar 

  25. A.L. Sobolewski, W. Domcke, Eur. Phys. J. D 20, 369–374 (2002)

    CAS  Google Scholar 

  26. A.L. Sobolewski, W. Domcke, Europhys. News 37, 20–23 (2006)

    CAS  Google Scholar 

  27. Z. Lan, V. Vallet, A.L. Sobolewski, S. Mahapatra, W. Domcke, J. Chem. Phys. 122, 224315(1–13) (2005)

    Google Scholar 

  28. S. Perun, A.L. Sobolewski, W. Domcke, J. Phys. Chem. A 110, 13238–13244 (2006)

    CAS  Google Scholar 

  29. S. Perun, A.L. Sobolewski, W. Domcke, Mol. Phys. 104, 1113–1122 (2006)

    CAS  Google Scholar 

  30. V. Vallet, Z. Lan, S. Mahapatra, A.L. Sobolewski, W. Domcke, Faraday. Discuss. 127, 283–293 (2004)

    CAS  Google Scholar 

  31. F. Bernardi, M. Olivucci, M.A. Robb, Isr. J. Chem. 33, 265–276 (1993)

    CAS  Google Scholar 

  32. F. Bernardi, M. Olivucci, M.A. Robb, Chem. Soc. Rev. 25, 321–328 (1996)

    CAS  Google Scholar 

  33. A.L. Sobolewski, W. Domcke, Phys. Chem. Chem. Phys. 6, 2763–2771 (2004)

    CAS  Google Scholar 

  34. A.L. Sobolewski, W. Domcke, Chem. Phys. 294, 73–83 (2003)

    CAS  Google Scholar 

  35. J. Jagger, in Photochemistry and Photobiology of Nucleic Acids, ed. by S.Y. Wang (Academic, New York 1976), pp. 147–186

    Google Scholar 

  36. S. Perun, A.L. Sobolewski, W. Domcke, J. Phys. Chem. A 110, 9031–9038 (2006)

    CAS  Google Scholar 

  37. T. Schultz, E. Samoylova, W. Radloff, I.V. Hertel, A.L. Sobolewski, W. Domcke Science 306, 1765–1768 (2004)

    CAS  Google Scholar 

  38. A.L. Sobolewski, W. Domcke, C. Hättig, Proc. Natl. Acad. Sci. USA 102, 17903–17906 (2005)

    CAS  Google Scholar 

  39. F. Salama, G.A. Galazutdinov, J. Krelowski, L.J. Allamandola, F.A. Musaev, Astrophys. J. 526, 265–273 (1999)

    CAS  Google Scholar 

  40. T. Henning, F. Salama, Science 282, 2204–2210 (1998)

    CAS  Google Scholar 

  41. A.G.G.M. Tielens, Annu. Rev. Astron. Astrophys. 46, 289–337 (2008)

    CAS  Google Scholar 

  42. L. Biennier, F. Salama, L.J. Allamandola, J.J. Scherer, J. Chem. Phys. 118, 7863–7872 (2003)

    CAS  Google Scholar 

  43. P. Bréchignac, T. Pino, Astron. Astrophys. 343, 49–52 (1999)

    Google Scholar 

  44. P. Bréchignac, T. Pino, N. Boudin, Spectrochim. Acta. Part A 57, 745–756 (2001)

    Google Scholar 

  45. D.A. da Silva Filho, R. Friedlein, V. Coropceanu, G. Öhrwall, W. Osikowicz, C. Suess, S.L. Sorensen, S. Svensson, W.R. Salaneck, J. Brédas, Chem. Commun. 1702–1703 (2004)

    Google Scholar 

  46. R.S. Sánchez-Carrera, V. Coropceanu, D. da Silva Filho, R. Friedlein, W. Osikowicz, R. Murdey, C. Suess, W.R. Salaneck, J.-L. Brédas, J. Phys. Chem. B. 110, 18904–18911 (2006)

    Google Scholar 

  47. O. Sukhorukov, A. Staicu, E. Diegel, G. Roullié, T. Henning, F. Huisken, Chem. Phys. Lett. 386, 259–264 (2004)

    CAS  Google Scholar 

  48. M. Born, K. Haung, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954)

    Google Scholar 

  49. B.H. Lengsfield, D.R. Yarkony, Adv. Chem. Phys. 82, 1–71 (1992)

    CAS  Google Scholar 

  50. W. Lichten, Phys. Rev. 131, 229–238 (1963)

    CAS  Google Scholar 

  51. F.T. Smith, Phys. Rev. 179, 111–123 (1969)

    Google Scholar 

  52. T.F. O’Malley, Adv. At. Mol. Phys. 7, 223–249 (1971)

    Google Scholar 

  53. W. Domcke, G. Stock, Adv. Chem. Phys. 100, 1–169 (1997)

    CAS  Google Scholar 

  54. H. Köppel, W. Domcke, in Encyclopedia of Computational Chemistry, ed. by P.v.R. Schleyer (Wiley, New York, 1998)

    Google Scholar 

  55. M. Baer, Chem. Phys. Lett. 35, 112–118 (1975)

    CAS  Google Scholar 

  56. C.A. Mead, D.G. Truhlar J. Chem. Phys. 77, 6090–6098 (1982)

    CAS  Google Scholar 

  57. M. Baer, Chem. Phys. 15, 49–57 (1976)

    CAS  Google Scholar 

  58. V. Sidis, Adv. Chem. Phys. 82, 73–134 (1992)

    CAS  Google Scholar 

  59. T. Pacher, L.S. Cederbaum, H. Köppel, Adv. Chem. Phys. 84, 293–391 (1993)

    CAS  Google Scholar 

  60. A. Thiel, H. Köppel, J. Chem. Phys. 110, 9371–9383 (1999)

    CAS  Google Scholar 

  61. T. Carrington, Discuss. Faraday Soc. 53, 27–34 (1972)

    Google Scholar 

  62. E.R. Davidson, J. Am. Chem. Soc. 99, 397–402 (1977)

    CAS  Google Scholar 

  63. E. Teller, J. Phys. Chem. 41, 109–116 (1937)

    CAS  Google Scholar 

  64. D.R. Yarkony, Rev. Mod. Phys. 68, 985–1013 (1996)

    CAS  Google Scholar 

  65. D.R. Yarkony, J. Phys. Chem. A 105, 6277–6293 (2001)

    CAS  Google Scholar 

  66. G.J. Atchity, S.S. Xantheas, K. Ruedenberg, J. Chem. Phys. 95, 1862–1876 (1991)

    Google Scholar 

  67. I.B. Bersuker, Chem. Rev. 101, 1067–1114 (2001)

    CAS  Google Scholar 

  68. E.B. Wilson Jr., J.C. Decius, P.C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955)

    Google Scholar 

  69. W. Eisfeld, Phys. Chem. Chem. Phys. 7, 832–839 (2005)

    CAS  Google Scholar 

  70. T. Ichino, A.J. Gianola, W.C. Lineberger, J.F. Stanton, J. Chem. Phys. 125, 084312(1–22) (2006)

    Google Scholar 

  71. T. Ichino, S.W. Wren, K.M. Vogelhuber, A.J. Gianola, W.C. Lineberger, J.F. Stanton, J. Chem. Phys. 129, 084310(1–28)(2008)

    Google Scholar 

  72. M. Nooijen, Int. J. Quantum Chem. 95, 768–783 (2003)

    CAS  Google Scholar 

  73. J. Neugebauer, E.J. Baerends, M. Nooijen, J. Phys. Chem. A 109, 1168–1179 (2005)

    CAS  Google Scholar 

  74. D.R. Yarkony, J. Phys. Chem. A 102, 8073–8077 (1998)

    CAS  Google Scholar 

  75. D.R. Yarkony, J. Chem. Phys. 112, 2111–2120 (2000)

    CAS  Google Scholar 

  76. L.S. Cederbaum, W. Domcke, Adv. Chem. Phys. 36, 205–344 (1977)

    CAS  Google Scholar 

  77. L.S. Cederbaum, J. Phys. B 8, 290–303 (1975)

    CAS  Google Scholar 

  78. W. Domcke, H. Köppel, L.S. Cederbaum, Mol. Phys. 43, 851–875 (1981)

    CAS  Google Scholar 

  79. J. Cullum, R. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Problems, Vols. I and II (Birkhäuser, Boston, 1985)

    Google Scholar 

  80. H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73–78 (1990)

    CAS  Google Scholar 

  81. U. Manthe, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 97, 3199–3213 (1992)

    CAS  Google Scholar 

  82. M.H. Beck, A. Jäckle, G.A. Worth, H.-D. Meyer, Phys. Rep. 324, 1–105 (2000)

    CAS  Google Scholar 

  83. G.A. Worth, M.H. Beck, A. Jäckle, H.-D. Meyer, The MCTDH Package, Version 8.2, (2000), University of Heidelberg, Heidelberg, Germany. Meyer. H. -D.: Version 8.3, (2002). http://www.pci.uni-heidelberg.de/tc/usr/mctdh/

  84. S.R. Long, J.T. Meel, J.P. Reilly, J. Chem. Phys. 79, 3206–3219 (1983)

    CAS  Google Scholar 

  85. K. Raghavachari, R.C. Haddon, T.A. Miller, V.E. Bondybey, J. Chem. Phys. 79, 1387–1395 (1983)

    CAS  Google Scholar 

  86. L.A. Chewter, M. Sander, K. Müller-Dethlefs, E.W. Schlag, J. Chem. Phys. 86, 4737–4744 (1987)

    CAS  Google Scholar 

  87. J. Eiding, R. Schneider, W. Domcke, H. Köppel, W. von Niessen, Chem. Phys. Lett. 177, 345–351 (1991)

    CAS  Google Scholar 

  88. H. Krause, H.J. Neusser, J. Chem. Phys. 97, 5923–5926 (1992)

    CAS  Google Scholar 

  89. R. Linder, K. Müller-Dethlefs, E. Wedum, K. Haber, E.R. Grant, Science 271, 1698–1702 (1996)

    Google Scholar 

  90. J.G. Goode, J.D. Hofstein, P.M. Johnson, J. Chem. Phys. 107, 1703–1716 (1997)

    CAS  Google Scholar 

  91. K. Müller-Dethlefs, J.B. Peel, J. Chem. Phys. 111, 10550–10554 (1999)

    Google Scholar 

  92. K. Siglow, H.J. Neusser, J. Electron Spectrosc. Relat. Phenom. 112, 199–207 (2000)

    CAS  Google Scholar 

  93. B.E. Applegate, T.A. Miller, J. Chem. Phys. 117, 10654–10674 (2002)

    CAS  Google Scholar 

  94. H. Köppel, M. Döscher, I. Bâldea, H.-D. Meyer, P.G. Szalay, J. Chem. Phys. 117, 2657–2671 (2002)

    Google Scholar 

  95. X. Gu, R.I. Kaiser, Acc. Chem. Res. 42, 290–302 (2009)

    CAS  Google Scholar 

  96. B.S. Haynes, in Fossil Fuel Combustion, ed. by A.F. Sarofim, W. Bartok (Wiley Interscience, New York, 1991), pp. 261–326

    Google Scholar 

  97. J.G. Radziszewski, Chem. Phys. Lett. 301, 565–570 (1999)

    CAS  Google Scholar 

  98. G.-S. Kim, A.M. Mebel, S.H. Lin, Chem. Phys. Lett. 361, 421–431 (2002)

    CAS  Google Scholar 

  99. L. Karlsson, L. Mattsson, R. Jadrny, T. Bergmark, K. Siegbahn, Phys. Scr. 14, 230–241 (1976)

    CAS  Google Scholar 

  100. I. Bâldea, J. Franz, H. Köppel, J. Mol. Struct. 838, 94–99 (2007)

    Google Scholar 

  101. J.W. Rabalais, R.J. Colton, J. Electron Spectrosc. Relat. Phenom. 1, 83–99 (1972)

    CAS  Google Scholar 

  102. T. Pino, S. Douin, N. Boudin, P. Bréchignac, J. Phys. Chem. A 111, 13358–13364 (2007)

    CAS  Google Scholar 

  103. E. Cavalieri, E. Rogan, Environ. Health. Perspect. 64, 69–84 (1985)

    CAS  Google Scholar 

  104. P. Ehrenfreund, M.A. Sephton, Faraday Discuss 133, 277–288 (2006)

    CAS  Google Scholar 

  105. A.B. Fialkov, J. Dennebaum, K.H. Homann, Combust. Flame 125, 763–777 (2001)

    CAS  Google Scholar 

  106. L.H. Keith, W.A. Telliard, Environ. Sci. Technol. 13, 416–423 (1979)

    Google Scholar 

  107. K.F. Hall, M. Boggio-Pasqua, M.J. Bearpark, M.A. Robb, J. Phys. Chem. A 110, 13591–13599 (2006)

    CAS  Google Scholar 

  108. L. Blancafort, F. Jolibois, M. Olivucci, M.A. Robb, J. Am. Chem. Soc. 123, 722–732 (2001)

    CAS  Google Scholar 

  109. D. Rolland, A.A. Specht, M.W. Blades, J.W. Hepburn, Chem. Phys. Lett. 373, 292–298 (2003)

    CAS  Google Scholar 

  110. S. Faraji, H. Köppel, W. Eisfeld, S. Mahapatra, Chem. Phys. 347, 110–119 (2008)

    CAS  Google Scholar 

  111. S. Ghanta, S. Mahapatra, Chem. Phys. 347, 97–109 (2008)

    CAS  Google Scholar 

  112. U. Höper, P. Botschwina, H. Köppel, J. Chem. Phys. 112, 4132–4142 (2000)

    Google Scholar 

  113. S. Mahapatra, V. Vallet, C. Woywod, H. Köppel, W. Domcke, J. Chem. Phys. 123, 231103(1–5) (2005)

    Google Scholar 

  114. S. Mahapatra, G.A. Worth, H.-D. Meyer, L.S. Cederbaum, H. Köppel, J. Phys. Chem. A 105, 5567–5576 (2001)

    CAS  Google Scholar 

  115. T.S. Venkatesan, S. Mahapatra, H. Köppel, L.S. Cederbaum, J. Mol. Struct. 838, 100–106 (2007)

    CAS  Google Scholar 

  116. T. Mondal, S. Mahapatra, J. Phys. Chem. A 112, 8215–8225 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

This study is supported, in part, by a grant from the DST, New Delhi (Grant No. DST/SF/04/2006). The authors thank CMSD, University of Hyderabad for the computational facilities. VSR thanks CSIR, New Delhi for a senior research fellowship. The authors thank S. Ghanta for his help in obtaining the results on the anthracene radical cation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sivaranjana Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reddy, V.S., Mahapatra, S. (2009). On the Vibronic Interactions in Aromatic Hydrocarbon Radicals and Radical Cations. In: Köppel, H., Yarkony, D., Barentzen, H. (eds) The Jahn-Teller Effect. Springer Series in Chemical Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03432-9_10

Download citation

Publish with us

Policies and ethics