Skip to main content

Fully Decentralized, Collaborative Multilateration Primitives for Uniquely Localizing WSNs

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5682))

  • 938 Accesses

Abstract

We provide primitives for uniquely localizing WSN nodes. The goal is to maximize the number of uniquely localized nodes assuming a fully decentralized model of computation. Each node constructs a cluster of its own and applies unique localization primitives on it. These primitives are based on constructing a special order for multilaterating the nodes within the cluster. The proposed primitives are fully collaborative and thus the number of iterations required to compute the localization is fewer than that of the conventional iterative multilateration approaches. This further limits the messaging requirements. With relatively small clusters and iteration counts we can localize almost all the uniquely localizable nodes.

Partially supported by TUBITAK grant 106E071.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  2. Aspnes, J., Eren, T., Goldenberg, D., Morse, A., Whiteley, W., Yang, Y., Anderson, B., Belhumeur, P.: A theory of network localization. IEEE Trans. on Mobile Computing 5(12), 1663–1678 (2006)

    Article  Google Scholar 

  3. Aspnes, J., Goldenberg, D., Yang, Y.: On the computational complexity of sensor network localization. In: Proc. of 1st Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks, pp. 32–44 (2004)

    Google Scholar 

  4. Basu, A., Gao, J., Mitchell, J., Sabhnani, G.: Distributed localization using noisy distance and angle information. In: Proc. of the 7th ACM Int. Symp. on Mobile ad hoc networking and computing, pp. 262–273 (2006)

    Google Scholar 

  5. Berg, A., Jordán, T.: A proof of connelly’s conjecture on 3-connected circuits of the rigidity matroid. J. Comb. Theory Ser. B 88(1), 77–97 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33(4), 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Efrat, A., Erten, C., Forrester, D., Kobourov, S.: A force-directed approach to sensor localization. In: Proc. 8th ACM/SIAM Alg. Eng. and Exp., pp. 108–118 (2006)

    Google Scholar 

  8. Goldenberg, D., Cao, P.B.P.M., Fang, J.: Localization in sparse networks using sweeps. In: Proc. of ACM MobiCom, pp. 110–121 (2006)

    Google Scholar 

  9. Hendrickson, B.: Conditions for unique graph realizations. SIAM Journal on Computing 21, 65–84 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001)

    Article  Google Scholar 

  11. Hu, L., Evans, D.: Localization for mobile sensor networks. In: Proc. of the 10th Int. Conf. on Mobile computing and networking, pp. 45–57 (2004)

    Google Scholar 

  12. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Comb. Theory Ser. B 94(1), 1–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krishnamachari, B.: Networking wireless sensors. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  14. Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics 4, 331–340 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mao, G., Fidan, B., Anderson, B.: Wireless sensor network localization techniques. Comput. Netw. 51(10), 2529–2553 (2007)

    Article  MATH  Google Scholar 

  16. Mehlhorn, K., Naher, S.: Leda: A platform for combinatorial and geometric computing. Communications of the ACM 38 (1999)

    Google Scholar 

  17. Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy range measurements. In: Proc. of the 2nd Int. Conf. on Embedded Networked Sensor Systems, pp. 50–61 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cakiroglu, A., Erten, C. (2009). Fully Decentralized, Collaborative Multilateration Primitives for Uniquely Localizing WSNs . In: Liu, B., Bestavros, A., Du, DZ., Wang, J. (eds) Wireless Algorithms, Systems, and Applications. WASA 2009. Lecture Notes in Computer Science, vol 5682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03417-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03417-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03416-9

  • Online ISBN: 978-3-642-03417-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics