Skip to main content

Competitive Group Testing and Learning Hidden Vertex Covers with Minimum Adaptivity

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

Abstract

Suppose that we are given a set of n elements d of which are “defective”. A group test can check for any subset, called a pool, whether it contains a defective. It is well known that d defectives can be found by using O(dlogn) pools. This nearly optimal number of pools can be achieved in 2 stages, where tests within a stage are done in parallel. But then d must be known in advance. Here we explore group testing strategies that use a nearly optimal number of pools and a few stages although d is not known to the searcher. One easily sees that O(logd) stages are sufficient for a strategy with O(dlogn) pools. Here we prove a lower bound of \({\it \Omega}(\log d/\log\log d)\) stages and a more general pools vs. stages tradeoff. As opposed to this, we devise a randomized strategy that finds d defectives using O(dlog(n/d)) pools in 3 stages, with any desired probability 1 − ε. Open questions concern the optimal constant factors and practical implications. A related problem motivated by, e.g., biological network analysis is to learn hidden vertex covers of a small size k in unknown graphs by edge group tests. (Does a given subset of vertices contain an edge?) We give a 1-stage strategy using O(k 3logn) pools, with any FPT algorithm for vertex cover enumeration as a decoder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Asodi, V.: Learning a Hidden Subgraph. SIAM J. Discr. Math. 18, 697–712 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D., Chen, J.: Learning a Hidden Graph Using O(logn) Queries per Edge. J. Computer and System Sci. 74, 546–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Noy, A., Hwang, F.K., Kessler, H., Kutten, S.: A New Competitive Algorithm for Group Testing. Discr. Appl. Math. 52, 29–38 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bouvel, M., Grebinski, V., Kucherov, G.: Combinatorial Search on Graphs Motivated by Bioinformatics Applications. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 16–27. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chen, H.B., Fu, H.L., Hwang, F.K.: An Upper Bound on the Number of Tests in Pooling Designs for the Error-Tolerant Complex Model. Optim. Letters 2, 425–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Kanj, I.A., Xia, G.: Simplicity is Beauty: Improved Upper Bounds for Vertex Cover. Technical report (2008)

    Google Scholar 

  7. Cheng, Y., Du, D.Z.: New Constructions of One- and Two-Stage Pooling Designs. J. Comp. Biol. 15, 195–205 (2008)

    Article  MathSciNet  Google Scholar 

  8. Damaschke, P.: On Parallel Attribute-Efficient Learning. J. Computer and System Sci. 67, 46–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damaschke, P.: Parameterized Enumeration, Transversals, and Imperfect Phylogeny Reconstruction. Theor. Computer Sci. 351, 337–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group Testing Problems. SIAM J. Comp. 34, 1253–1270 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, D.Z., Park, H.: On Competitive Group Testing. SIAM J. Comp. 23, 1019–1025 (1994)

    Article  MathSciNet  Google Scholar 

  12. Du, D.Z., Xue, G., Sun, S.Z., Cheng, S.W.: Modifications of Competitive Group Testing. SIAM J. Comp. 23, 82–96 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes. SIAM J. Comp. 36, 1360–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kahng, A.B., Reda, S.: New and Improved BIST Diagnosis Methods from Combinatorial Group Testing Theory. IEEE Trans. CAD of Integr. Circuits and Systems 25, 533–543 (2006)

    Article  Google Scholar 

  15. Lappe, M., Holm, L.: Unraveling Protein Interaction Networks with Near-Optimal Efficiency. Nature Biotech. 22, 98–103 (2003)

    Article  Google Scholar 

  16. Schlaghoff, J., Triesch, E.: Improved Results for Competitive Group Testing. Comb., Prob. and Comp. 14, 191–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damaschke, P., Sheikh Muhammad, A. (2009). Competitive Group Testing and Learning Hidden Vertex Covers with Minimum Adaptivity. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics