Skip to main content

Jets and Outflows from Collapsing Objects

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 791))

Abstract

Jets and outflows are ubiquitously observed around young stellar objects. There is now strong evidence that these jets are launched from the protostellar disc around the young stars through the coupling of magnetic fields. Magnetic fields threading the pre-stellar molecular cores are dragged inwards during the gravitational collapse and are wound up by the rotating gas in the protostellar disc. The resulting geometry of the magnetic field is that of a hourglass. The magnetic flux is strongly compressed inside the central region and flux lines pointing outwards connecting to the outer region. Additionally, the magnetic field lines anchored to the underlying protodisc are wound up and acquire a strong toroidal component. Such a field configuration, together with the underlying rotor, is known to launch and accelerate material off the disc. This could be the onset of the observed jets around young stellar objects.

In this contribution to the Jetset lecture notes we summarise the research progress in the field of jet launching from collapsing objects. Complying with this workshop on high-performance computing in astrophysics this is done while focusing on results from numerical simulations for this task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A., Li, Z., Shu, F.H., 2003, Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking. ApJ 599, 363–379, DOI 10.1086/379243

    Google Scholar 

  2. Alves, J.F., Lada, C.J., Lada, E.A., 2001, Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. Nature 409, 159–161

    Article  ADS  Google Scholar 

  3. Andre, P., Ward-Thompson, D., Barsony, M., 2000, From Prestellar Cores to Protostars: The Initial Conditions of Star Formation. Protostars and Planets IV pp 59–+

    ADS  Google Scholar 

  4. Arce, H.G., Shepherd, D., Gueth, F., Lee, C.F., Bachiller, R., Rosen, A., Beuther, H., 2007, Molecular Outflows in Low- and High-Mass Star-forming Regions. In: B. Reipurth, D. Jewitt, K. Keil (eds) Protostars and Planets V, pp 245–260 157, 166

    Google Scholar 

  5. Bacciotti, F., Ray, T.P., Mundt, R., Eislöffel, J., Solf, J., 2002, Hubble Space Telescope/STIS Spectroscopy of the Optical Outflow from DG Tauri: Indications for Rotation in the Initial Jet Channel. ApJ 576, 222–231

    Article  ADS  Google Scholar 

  6. Bachiller, R., 1996, Bipolar Molecular Outflows from Young Stars and Protostars. ARA&A 34, 111–154

    Article  ADS  Google Scholar 

  7. Bally, J., Reipurth, B., Davis, C.J., 2007, Observations of Jets and Outflows from Young Stars. In: B. Reipurth, D. Jewitt, K. Keil (eds) Protostars and Planets V, pp 215–230

    Google Scholar 

  8. Banerjee, R., Pudritz, R.E., 2006, Outflows and jets from collapsing magnetized cloud cores. ApJ 641, 949–+

    Article  ADS  Google Scholar 

  9. Banerjee, R., Pudritz, R.E., 2007, Massive star formation via high accretion rates and early disk-driven outflows. ApJ 660, 479, astro-ph/0612674

    Google Scholar 

  10. Banerjee, R., Pudritz, R.E., Holmes, L., 2004, The formation and evolution of protostellar discs; three-dimensional adaptive mesh refinement hydrosimulations of collapsing, rotating Bonnor-Ebert spheres. MNRAS 355, 248–272

    Article  ADS  Google Scholar 

  11. Bate, M.R., Burkert, A., 1997, Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity. MNRAS 288, 1060–1072

    ADS  Google Scholar 

  12. Beck, R., 2001, Galactic and Extragalactic Magnetic Fields. Space Sci Rev 99, 243–260, arXiv:astro-ph/0012402

    Google Scholar 

  13. Berger, M.J., Colella, P., 1989, Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82, 64–84

    Article  MATH  ADS  Google Scholar 

  14. Berger, M.J., Oliger, J., 1984, Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys 53, 484–+

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Beuther, H., Shepherd, D., 2005, Precursors of UCHII Regions and the Evolution of Massive Outflows. In: M.S.N. Kumar, M. Tafalla, P. Caselli (eds) Cores to Clusters: Star Formation with Next Generation Telescopes, pp 105–119

    Google Scholar 

  16. Blandford, R.D., Payne, D.G., 1982, Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199, 883–903

    MATH  ADS  Google Scholar 

  17. Bonnor, W.B., 1956, Boyle’s Law and gravitational instability. MNRAS 116, 351–+

    MathSciNet  ADS  Google Scholar 

  18. Børve, S., Omang, M., Trulsen, J., 2006, Multidimensional MHD Shock Tests of Regularized Smoothed Particle Hydrodynamics. ApJ 652, 1306–1317, DOI 10.1086/508454

    Google Scholar 

  19. Boss, A.P., 2002, Collapse and Fragmentation of Molecular Cloud Cores. VII. Magnetic Fields and Multiple Protostar Formation. ApJ 568, 743–753, DOI 10.1086/339040

    Google Scholar 

  20. Braithwaite, J., Spruit, H.C., 2004, A fossil origin for the magnetic field in A stars and white dwarfs. Nature 431, 819–821, DOI 10.1038/nature02934

    Google Scholar 

  21. Brandenburg, A., Nordlund, A., Stein, R.F., Torkelsson, U., 1995, Dynamogenerated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow. ApJ 446, 741–+, DOI 10.1086/175831

    Google Scholar 

  22. Cabrit, S., Raga, A., Gueth, F., 1997, Models of Bipolar Molecular Outflows. In: B. Reipurth, C. Bertout (eds) Herbig-Haro Flows and the Birth of Stars, IAU Symposium, vol 182, pp 163–180

    Google Scholar 

  23. Collins, D.C., Norman, M.L., 2004, Devolopment of an AMR MHD module for the code Enzo. In: Bulletin of the American Astronomical Society, Bullet Am Astron Soc 36, 1605–+

    Google Scholar 

  24. Contopoulos, J., 1995, A simple type of magnetically driven jets: An astrophysical plasma gun. ApJ 450, 616–+, DOI 10.1086/176170

    Google Scholar 

  25. Contopoulos, J., 1996, General Axisymmetric Magnetohydrodynamic Flows: Theory and solutions. ApJ 460, 185–+, DOI 10.1086/176960

    Google Scholar 

  26. Crutcher, R.M., Troland, T.H., Lazareff, B., Paubert, G., Kazès, I., 1999, Detection of the CN Zeeman Effect in Molecular Clouds. ApJ 514, L121–L124 158,

    Article  ADS  Google Scholar 

  27. Desch, S.J., Mouschovias, T.C., 2001, The magnetic decoupling stage of star formation. ApJ 550, 314–333

    Article  ADS  Google Scholar 

  28. Donati, J.F., Paletou, F., Bouvier, J., Ferreira, J., 2005, Direct detection of a magnetic field in the innermost regions of an accretion disk. Nature 438, 466–469 169,

    Article  ADS  Google Scholar 

  29. Duffin, D.F., Pudritz, R.E., 2008, Simulating hydromagnetic processes in star formation: introducing ambipolar diffusion into an adaptive mesh refinement code. MNRAS in press arXiv:0810.0299

    Google Scholar 

  30. Ebert, R., 1955, Über die Verdichtung von H I-Gebieten. Mit 5 Textabbildungen. Zap 37, 217–+

    MATH  ADS  Google Scholar 

  31. Fendt, C., Camenzind, M., 1996, Magnetohydrodynamic Structure of Protostellar Jets. Astrophys Lett Commun 34, 289–+

    ADS  Google Scholar 

  32. Ferreira, J., 1997, Magnetically-driven jets from Keplerian accretion discs. A&A 319, 340–359

    ADS  Google Scholar 

  33. Foster, P.N., Chevalier, R.A., 1993, Gravitational collapse of an isothermal sphere. ApJ 416, 303–+

    Article  ADS  Google Scholar 

  34. Fromang, S., Hennebelle, P., Teyssier, R., 2005, RAMSES-MHD: an AMR Godunov code for astrophysical applications. In: F. Casoli, T. Contini, J.M. Hameury, L. Pagani (eds) SF2A-2005: Semaine de l’Astrophysique Francaise, pp 743–+

    Google Scholar 

  35. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Truran, J.W., Tufo, H., 2000, FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. ApJS 131, 273–334

    Article  ADS  Google Scholar 

  36. Hennebelle, P., Fromang, S., 2008, Magnetic processes in a collapsing dense core. I. Accretion and ejection. A&A 477, 9–24, DOI 10.1051/0004-6361:20078309, arXiv:0709.2886

    Google Scholar 

  37. Hosking, J.G., Whitworth, A.P., 2004, Fragmentation of magnetized cloud cores. MNRAS 347, 1001–1010, DOI 10.1111/j.1365-2966.2004.07274.x

    Google Scholar 

  38. Hosking, J.G., Whitworth, A.P., 2004, Modelling ambipolar diffusion with two-fluid smoothed particle hydrodynamics. MNRAS 347, 994–1000, DOI 10.1111/j.1365-2966.2004.07273.x

    Google Scholar 

  39. Johns-Krull, C.M., Valenti, J.A., Koresko, C., 1999, Measuring the magnetic field on the classical T Tauri Star BP Tauri. ApJ 516, 900–915

    Article  ADS  Google Scholar 

  40. Kato, Y., Mineshige, S., Shibata, K., 2004, Magnetohydrodynamic accretion flows: Formation of magnetic tower jet and subsequent quasi-steady state. ApJ 605, 307–320

    Article  ADS  Google Scholar 

  41. Königl, A., Pudritz, R.E., 2000, Disk winds and the accretion-outflow connection. Protostars and Planets IV pp 759–+

    ADS  Google Scholar 

  42. Lada, C.J., Alves, J.F., Lombardi, M., 2007, Near-Infrared Extinction and Molecular Cloud Structure. In: B. Reipurth, D. Jewitt, K. Keil (eds) Protostars and Planets V, pp 3–15

    Google Scholar 

  43. Larson, R.B., 1969, Numerical calculations of the dynamics of collapsing protostar. MNRAS 145, 271–+163

    ADS  Google Scholar 

  44. Levy, E.H., Sonett, C.P., 1978, Meteorite magnetism and early solar system magnetic fields. In: IAU Colloq. 52: Protostars and Planets, pp 516–+

    Google Scholar 

  45. Li, P.S., Norman, M.L., Mac Low, M., Heitsch, F., 2004, The formation of self-gravitating cores in turbulent magnetized clouds. ApJ 605, 800–818

    Article  ADS  Google Scholar 

  46. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E., 1994, Magnetic field dragging in accretion discs. MNRAS 267, 235–240

    ADS  Google Scholar 

  47. Lynden-Bell, D., 2003, On why discs generate magnetic towers and collimate jets. MNRAS 341, 1360–1372

    Article  ADS  Google Scholar 

  48. Machida, M.N., Tomisaka, K., Matsumoto, T., 2004, First MHD simulation of collapse and fragmentation of magnetized molecular cloud cores. MNRAS 348, L1–L5

    Article  ADS  Google Scholar 

  49. Machida, M.N., Matsumoto, T., Hanawa, T., Tomisaka, K., 2005, Collapse and fragmentation of rotating magnetized clouds - II. Binary formation and fragmentation of first cores. MNRAS 362, 382–402, DOI 10.1111/j.1365-2966.2005.09327.x, arXiv:astro-ph/0506440

    Google Scholar 

  50. Machida, M.N., Matsumoto, T., Tomisaka, K., Hanawa, T., 2005, Collapse and fragmentation of rotating magnetized clouds – I. Magnetic flux-spin relation. MNRAS 362, 369–381, DOI 10.1111/j.1365-2966.2005.09297.x, arXiv:astroph/0506439

    Google Scholar 

  51. Machida, M.N., Inutsuka, Si., Matsumoto, T., 2006, Outflows driven by giant protoplanets. ApJ 649, L129–L132, DOI 10.1086/508256, arXiv:astroph/0604594

    Google Scholar 

  52. Machida, M.N., Matsumoto, T., Hanawa, T., Tomisaka, K., 2006, Evolution of Rotating Molecular Cloud Core with Oblique Magnetic Field. ApJ 645, 1227–1245, DOI 10.1086/504423, arXiv:astro-ph/0602034

    Google Scholar 

  53. Machida, M.N., Inutsuka, Si., Matsumoto, T., 2007, Magnetic Fields and Rotations of Protostars. ApJ 670, 1198–1213, DOI 10.1086/521779, arXiv:astroph/0702183

    Google Scholar 

  54. MachidaMN, Inutsuka, Si., Matsumoto, T., 2008, High- and Low-VelocityMagnetized Outflows in the Star Formation Process in a Gravitationally Collapsing Cloud. ApJ 676, 1088–1108, DOI 10.1086/528364

    Google Scholar 

  55. Matsumoto, T., Tomisaka, K., 2004, Directions of outflows, disks, magnetic fields, and rotation of ysos in collapsing molecular cloud cores. ApJ 616, 266–282, astro-ph/0408086

    Google Scholar 

  56. Meglicki, Z., 1994, Verification and accuracy of smoothed particle magnetohydrodynamics. Comput Phys Commun 81, 91–104, DOI 10.1016/0010-4655(94)90113-9

    Google Scholar 

  57. Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A., 2007, PLUTO: A Numerical Code for Computational Astrophysics. ApJS 170, 228–242, DOI 10.1086/513316, arXiv:astro-ph/0701854

    Google Scholar 

  58. Mouschovias, T.C., Paleologou, E.V., 1979, The angular momentum problem and magnetic braking - an exact time-dependent solution. ApJ 230, 204–222

    Article  ADS  Google Scholar 

  59. Mouschovias, T.C., Paleologou, E.V., 1980, Magnetic braking of an aligned rotator during star formation – an exact, time-dependent solution. ApJ 237, 877–899

    Article  ADS  Google Scholar 

  60. O’Shea, B.W., Bryan, G., Bordner, J., Norman, M.L., Abel, T., Harkness, R., Kritsuk, A., 2004, Introducing Enzo, an AMR Cosmology Application. ArXiv Astrophysics e-prints astro-ph/0403044

    Google Scholar 

  61. Ouyed, R., Pudritz, R.E., 1997, Numerical Simulations of Astrophysical Jets from Keplerian Disks. I. Stationary Models. ApJ 482, 712–+, DOI 10.1086/304170

    Google Scholar 

  62. Price, D.J., Monaghan, J.J., 2004, Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension. MNRAS 348, 123–138, DOI 10.1111/j.1365-2966.2004.07345.x, arXiv:astro-ph/0310789

    Google Scholar 

  63. Price, D.J., Monaghan, J.J., 2004, Smoothed ParticleMagnetohydrodynamics – II. Variational principles and variable smoothing-length terms.MNRAS 348, 139–152, DOI 10.1111/j.1365-2966.2004.07346.x, arXiv:astro-ph/0310790

    Google Scholar 

  64. Price, D.J., Monaghan, J.J., 2005, Smoothed Particle Magnetohydrodynamics – III. Multidimensional tests and the ▽.B= 0 constraint. MNRAS 364, 384–406, DOI 10.1111/j.1365-2966.2005.09576.x, arXiv:astro-ph/0509083

    Google Scholar 

  65. Pudritz, R.E., 1981, Dynamo action in turbulent accretion discs around black holes – part two – the mean magnetic field. MNRAS 195, 897

    MATH  ADS  Google Scholar 

  66. Pudritz, R.E., 1981, Dynamo action in turbulent accretion discs around black holes. I – The fluctuations. II – The mean magnetic field. MNRAS 195, 881

    MATH  ADS  Google Scholar 

  67. Pudritz, R.E., 2003, Accretion-Ejection Models of Astrophysical Jets. NATO ASI, Les Houches, Session LXXVIII, Accretion Discs, Jets and High Energy Phenomena in Astrophysicspp p. 187–230

    Google Scholar 

  68. Pudritz, R.E., Norman, C.A., 1983, Centrifugally driven winds from contracting molecular disks. ApJ 274, 677–697

    Article  ADS  Google Scholar 

  69. Pudritz, R.E., Ouyed, R., Fendt, C., Brandenburg, A., 2007, Disk Winds, Jets, and Outflows: Theoretical and Computational Foundations. In: B. Reipurth, D. Jewitt, K. Keil (eds) Protostars and Planets V, pp 277–294

    Google Scholar 

  70. Pudritz, R.E., Banerjee, R., Ouyed, R., 2008, The role of jets in the formation of planets, stars, and galaxies. In: Charbrier, G. (ed) Structure formation in the Universe

    Google Scholar 

  71. Reipurth, B., Bally, J., 2001, Herbig-Haro Flows: Probes of Early Stellar Evolution. ARA&A 39, 403–455, DOI 10.1146/annurev.astro.39.1.403

    Google Scholar 

  72. Ruffert, M., 1992, Collisions between a white dwarf and a main-sequence star. II – Simulations using multiple-nested refined grids. A&A 265, 82–105

    ADS  Google Scholar 

  73. Shepherd, D.S., Churchwell, E., 1996, Bipolar molecular outflows in massive star formation regions. ApJ 472, 225–+, DOI 10.1086/178057

    Google Scholar 

  74. Shepherd, D.S., Churchwell, E., 1996, High-velocity molecular gas from high-mass star formation regions. ApJ 457, 267–+, DOI 10.1086/176727

    Google Scholar 

  75. Shibata, K., Uchida, Y., 1985, A magnetodynamic mechanism for the formation of astrophysical jets. I – Dynamical effects of the relaxation of nonlinear magnetic twists. PASJ37, 31–46

    ADS  Google Scholar 

  76. Stepinski, T.F., Levy, E.H., 1988, Generation of dynamo magnetic fields in protoplanetary and other astrophysical accretion disks. ApJ 331, 416–434, DOI 10.1086/166569

    Google Scholar 

  77. Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B., 2008, Athena: A new code for astrophysical MHD. ArXiv e-prints 804, 0804.0402

    Google Scholar 

  78. Tomisaka, K., 1998, Collapse-driven outflow in star-forming molecular cores. ApJ 502, L163+

    Article  ADS  Google Scholar 

  79. Tomisaka, K., 2002, Collapse of rotating magnetized molecular cloud cores and mass outflows. ApJ 575, 306–326

    Article  ADS  Google Scholar 

  80. Truelove, J.K., Klein, R.I., McKee, C.F., Holliman, J.H., Howell, L.H., Greenough, J.A., 1997, The jeans condition: A new constraint on spatial resolution in simulations of isothermal self-gravitational hydrodynamics. ApJ 489, L179+

    Article  ADS  Google Scholar 

  81. Uchida, Y., Shibata, K., 1985, Magnetodynamical acceleration of CO and optical bipolar flows from the region of star formation. PASJ37, 515–535

    ADS  Google Scholar 

  82. von Rekowski, B., Brandenburg, A., Dobler, W., Dobler, W., Shukurov, A., 2003, Structured outflow from a dynamo active accretion disc. A&A 398, 825–844, DOI 10.1051/0004-6361:20021699

    Google Scholar 

  83. Wang, P., Abel, T., 2009, Magnetohydrodynamic simulations of disk galaxy formation: the magnetization of the cold and warm medium. ApJ 696, 96–109 203

    Google Scholar 

  84. Xu, H., Collins, D.C., NormanML, Li, S., Li, H., 2008, A cosmological AMRMHD module for Enzo. ArXiv e-prints 804, 0804.1334

    Google Scholar 

  85. Yorke, H.W., Bodenheimer, P., Laughlin, G., 1993, The formation of protostellar disks. I – 1 M(solar). ApJ 411, 274–284

    Article  ADS  Google Scholar 

  86. Ziegler, E., Dolag, K., Bartelmann, M., 2006, Divergence cleaning techniques in smoothed particle magnetohydrodynamics simulations. Astronomische Nachrichten 327, 607–+, DOI 10.1002/asna.200610602

    Google Scholar 

  87. Ziegler, U., 2005, Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code. A&A 435, 385–395, DOI 10.1051/0004-6361:20042451

    Google Scholar 

Download references

Acknowledgments

I thank the JETSET Network which gave me the opportunity to present this lecture. I also thank the organisers of the 5th Jetset workshop for their hospitality. I am funded by the Deutsche Forschungsgemeinschaft within the Emmy-Noether grant BA 3706/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robi Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banerjee, R. (2009). Jets and Outflows from Collapsing Objects. In: Gracia, J., Colle, F., Downes, T. (eds) Jets From Young Stars V. Lecture Notes in Physics, vol 791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03370-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03370-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03369-8

  • Online ISBN: 978-3-642-03370-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics