Advertisement

Jet Stability: A Computational Survey

  • Rony KeppensEmail author
  • Zakaria Meliani
  • Hubert Baty
  • Bart van der Holst
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 791)

Abstract

To investigate stability properties of astrophysical jets, high-resolution numerical simulations are nowadays used routinely. In this chapter, we address jet stability issues using two complementary approaches: one where highly idealized, classical magnetohydrodynamic (MHD) “jet” configurations are simulated in detail, and one where the full complexity of relativistic jet flows is mimicked computationally. In the former, we collect vital insights into multi-dimensional MHD evolutions, where we start from simple planar, magnetized shear flows to eventually model full three dimensional, helically magnetized jet segments. Such a gradual approach allows an in-depth study of [1] the nonlinear interaction of multiple, linearly unstable modes; as well as [2] their potential to steepen into shocks with intricate shock–shock interactions. All these return to varying degree in the latter approach, where jets are impulsively injected into the simulation domain, and followed over many dynamical timescales. In particular, we review selected recent insights gained from relativistic AGN jet modeling. There, we cover both relativistic hydro and magnetohydrodynamic simulations. In all these studies, the use of grid-adaptive codes suited for modern supercomputing facilities is illustrated.

Keywords

Shear Layer Lorentz Factor Polytropic Index Helmholtz Mode Relativistic Hydro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baty, H., 2005, A&A 430, 9 135, 146zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Baty, H., Keppens, R., 2002, ApJ 580, 800CrossRefADSGoogle Scholar
  3. 3.
    Baty, H., Keppens, R., Comte, P., 2003, Phys Plasmas 10, 4661CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Baty, H., Keppens, R., 2006, A&A 447, 9CrossRefADSGoogle Scholar
  5. 5.
    Celotti, A., Ghisellini, G., 2008, MNRAS 325, 283CrossRefADSGoogle Scholar
  6. 6.
    De Sterck, H., Low, B.C., Poedts, S., 1998, Phys. Plasmas 5, 4015CrossRefADSGoogle Scholar
  7. 7.
    De Sterck, H., Low, B.C., Poedts, S., 1999, Phys. Plasmas 6, 954CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Giovannini, G., 2004, Astrophys Space Sci 293, 1CrossRefADSGoogle Scholar
  9. 9.
    Goedbloed, J.P., Poedts, S., 2004, Principles of Magnetohydrodynamics, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Hardee, P.E., 2007, ApJ 664, 26CrossRefADSGoogle Scholar
  11. 11.
    Jeong, H., Ryu, D., Jones, T.W., Frank, A., 2000, ApJ 529, 536CrossRefADSGoogle Scholar
  12. 12.
    Jones, T.W., Gaalaas, J.B., Ryu, D., Frank, A., 1997, ApJ 482, 230CrossRefADSGoogle Scholar
  13. 13.
    Kellermann, K.I., Lister, M.L., Homan, D.C., et al., 2004, ApJ 609, 539CrossRefADSGoogle Scholar
  14. 14.
    Keppens, R., Tóth, G., 1999, Phys Plasmas 6, 1461CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Keppens, R., Tóth, G., Westermann, R.H.J., Goedbloed, J.P., 1999, J Plasma Phys 61, 1CrossRefADSGoogle Scholar
  16. 16.
    Keppens, R., Nool, M., Tóth, G., Goedbloed, J.P., 2003, Comp Phys Commun 153, 317CrossRefADSzbMATHGoogle Scholar
  17. 17.
    Keppens, R., Meliani, Z., van der Holst, B., Casse, F., 2008, A&A 486, 663CrossRefADSGoogle Scholar
  18. 18.
    Komissarov, S.S., 1999, MNRAS 308, 1069CrossRefADSGoogle Scholar
  19. 19.
    Leismann, T., Antón, L., Aloy, M.A., Müller, E., Martí, J.M., Miralles, J.A., Inabnez, J.M., 2005, A&A 436, 503CrossRefADSGoogle Scholar
  20. 20.
    Malagoli, A., Bodo, G., Rosner, R., 1996, ApJ 456, 708CrossRefADSGoogle Scholar
  21. 21.
    Martí, J.M., Müller, E., Font, J.A., Ibàñez, J.M.A., Marquina, A., 1997, ApJ 479,CrossRefADSGoogle Scholar
  22. 22.
    Matsakos, T., Tsinganos, K., Vlahakis, N., et al., 2008, A&A 477, 521zbMATHCrossRefADSGoogle Scholar
  23. 23.
    Meliani, Z., Keppens, R., 2007, A&A 467 L41CrossRefADSGoogle Scholar
  24. 24.
    Meliani, Z., Keppens, R., 2007, A&A 475, 785CrossRefADSGoogle Scholar
  25. 25.
    Meliani, Z., Keppens, R., Giacomazzo, B., 2008, A&A, Accepted for publicationGoogle Scholar
  26. 26.
    Miura, A., Pritchett, P.L., 1982, JGR 87, 7431CrossRefADSGoogle Scholar
  27. 27.
    Palotti, M.L., Heitsch, F., Zweibel, E.G., Huang, Y.-M., 2008, ApJ 678, 234CrossRefADSGoogle Scholar
  28. 28.
    Ryu, D., Jones, T.W., Frank, A., 2000, ApJ 545, 475CrossRefADSGoogle Scholar
  29. 29.
    Tóth, G., Odstril, D., 1996, JCP 128, 82zbMATHCrossRefADSGoogle Scholar
  30. 30.
    van der Holst, B., Keppens, R., 2007, JCP 226, 925zbMATHCrossRefADSGoogle Scholar
  31. 31.
    Zaliznyak, Yu., Keppens, R., Goedbloed, J.P., 2003, Phys Plasmas 10, 4478CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rony Keppens
    • 1
    • 2
    • 3
    Email author
  • Zakaria Meliani
    • 4
  • Hubert Baty
    • 5
  • Bart van der Holst
    • 6
  1. 1.Centre for Plasma AstrophysicsLeuven Mathematical Modeling and Computational Science CenterK.U.LeuvenBelgium
  2. 2.FOM-Institute for Plasma Physics RijnhuizenNieuwegeinThe Netherlands
  3. 3.Astronomical InstituteUtrecht UniversityUtrechtThe Netherlands
  4. 4.Centre for Plasma AstrophysicsK.U.LeuvenBelgium
  5. 5.Observatoire AstronomiqueStrasbourgFrance
  6. 6.University of MichiganAnn ArborUSA

Personalised recommendations