Advertisement

Three Dimensional Continuum Radiative Transfer

  • Jürgen SteinackerEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 791)

Abstract

Radiative transfer is introduced as one of the grand challenge problems in astrophysics due to its key role of radiation as the main carrier of information and the high dimensionality of the problem. The relation to line RT is outlined and general solution methods are reviewed. We give the equation system for the stationary case of continuum radiation and discuss the different equation parts. As example for solution strategies, we discuss adaptively defined grids and ray-tracing algorithms dealing with high optical depth. The results of a two dimensional continuum RT benchmark are shown. Typical applications for continuum radiative transfer in star formation are presented in models for: (i) an evolving molecular cloud core as seen in SPH simulations and analyzed by forward RT calculations, (ii) SO-1 as largest circumstellar disk known so far, (iii) UC-1 as the first hypercompact HII region with a circumstellar disk candidate, (iv) IRS 15 as the first candidate for a remnant disk around a massive star, and (v) Rho Oph D where the inverse transfer modeling has led to the three dimensional density and dust temperature structure of the molecular cloud core.

Keywords

Dust Particle Optical Depth Star Formation Massive Star Column Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, T., Wandelt, B.D., 2002, MNRAS 330, L53CrossRefADSGoogle Scholar
  2. 2.
    Baes, M., Stamatellos, D.,Davies, J.I., Whitworth, A.P., Sabatini, S., Roberts, S., Linder, S.M., Evans, R., 2005, New Astronomy 10, 523CrossRefADSGoogle Scholar
  3. 3.
    Bethell, T.J., Chepurnov, A., Lazarian, A., Kim, J., 2007, ApJ 663, 1055CrossRefADSGoogle Scholar
  4. 4.
    Beuther, H., Steinacker, J., 2007, ApJL 656, L85CrossRefADSGoogle Scholar
  5. 5.
    Bianchi, S. 2007, A&A 471, 765CrossRefADSGoogle Scholar
  6. 6.
    Bonnell, I.A., Bate, M.R., 2002, MNRAS 336, 659CrossRefADSGoogle Scholar
  7. 7.
    Chini, R., Hoffmeister, V., Kimeswenger, S., Nielbock, M., Nürnberger, D., Schmidtobreick, L., Sterzik, M., 2004, Nature 429, 155CrossRefADSGoogle Scholar
  8. 8.
    Chini, R., Hoffmeister, V.H., Nielbock, M., Scheyda, C.M., Steinacker, J., Siebenmorgen, R., Nürnberger, D., 2006, ApJL 645, L61CrossRefADSGoogle Scholar
  9. 9.
    Draine, B.T., Lee, H.M., 1984, ApJ 285, 89CrossRefADSGoogle Scholar
  10. 10.
    Dullemond, C.P., Turolla, R., 2000, A&A 360, 1187ADSGoogle Scholar
  11. 11.
    Efstathiou, A., Rowan-Robinson, M., 1995, MNRAS 273, 649ADSGoogle Scholar
  12. 12.
    Ercolano, B., Barlow, M.J., Storey, P.J., 2005, MNRAS 362, 1038CrossRefADSGoogle Scholar
  13. 13.
    Gordon, K.D., Misselt, K.A., Witt, A.N., Clayton, G.C., 2001, ApJ 551, 269CrossRefADSGoogle Scholar
  14. 15.
    Ivezic, Z., Groenewegen, M.A.T., Men’shchikov, A., Szczerba, R., 1997, MNRAS 291, 121ADSGoogle Scholar
  15. 16.
    Jonsson, P., 2006, MNRAS 372, 2CrossRefADSGoogle Scholar
  16. 17.
    Juvela, M. 2005, A&A 440, 531CrossRefADSGoogle Scholar
  17. 18.
    Min, M., Hovenier, J.W., de Koter, A., 2003, A&A 404, 35CrossRefADSGoogle Scholar
  18. 19.
    Misselt, K.A., Gordon, K.D., Clayton, G.C., Wolff, M.J., 2001, ApJ 551, 277CrossRefADSGoogle Scholar
  19. 20.
    Nielbock, M., Chini, R., Hoffmeister, V.H., Scheyda, C.M., Steinacker, J., Nürnberger, D., Siebenmorgen, R., 2007, ApJL 656, L81 86CrossRefADSGoogle Scholar
  20. 21.
    Pascucci, I., Wolf, S., Steinacker, J., Dullemond, C.P., Henning, T., Niccolini, G., Woitke, P., Lopez, B. 2004, A&A 417, 793CrossRefADSGoogle Scholar
  21. 22.
    Pinte, C., Ménard, F., Duchêne, G., Bastien, P., 2006, A&A 459, 797CrossRefADSGoogle Scholar
  22. 23.
    Stamatellos, D., Whitworth, A.P., Bisbas, T., Goodwin, S., 2007, A&A 475, 37zbMATHCrossRefADSGoogle Scholar
  23. 24.
    Steinacker, J., Thamm, E., Maier, U., 1996, JQSRT 97, 56Google Scholar
  24. 25.
    Steinacker, J., Hackert, R., Steinacker, A., Bacmann, A., 2002, JQSRT 73, 557ADSGoogle Scholar
  25. 26.
    Steinacker, J., Michel, B., Bacmann, A., 2002, JQSRT 74, 183ADSGoogle Scholar
  26. 27.
    Steinacker, J., Bacmann, A., Henning, T. 2002, JQSRT 75, 765ADSGoogle Scholar
  27. 28.
    Steinacker, J., Henning, T., Bacmann, A., Semenov, D., 2003, A&A 401, 405zbMATHCrossRefADSGoogle Scholar
  28. 29.
    Steinacker, J.,Lang, B., Burkert, A., Bacmann, A., Henning, T., 2004, ApJL 615, L157CrossRefADSGoogle Scholar
  29. 30.
    Steinacker, J., Bacmann, A., Henning, T., Klessen, R., Stickel, M., 2005, A&A 434, 167CrossRefADSGoogle Scholar
  30. 31.
    Steinacker, J., Bacmann, A., Henning, T., 2006, ApJ 645, 920CrossRefADSGoogle Scholar
  31. 32.
    Steinacker, J., Chini, R., Nielbock, M., Nürnberger, D., Hoffmeister, V., Huré, J.-M., Semenov, D., 2006, A&A 456, 1013CrossRefADSGoogle Scholar
  32. 33.
    Whitney, B.A., Wood, K., Bjorkman, J.E., Wolff, M. J., 2003, ApJ 591, 1049CrossRefADSGoogle Scholar
  33. 34.
    Wolf, S. 2003, Comput Phys Commun 150, 99CrossRefADSGoogle Scholar
  34. 35.
    Wolfire, M.G., Cassinelli, J. P., 1987, ApJ 319, 850CrossRefADSGoogle Scholar
  35. 36.
    Wood, K., Mathis, J.S., Ercolano, B. 2004, MNRAS 348, 1337CrossRefADSGoogle Scholar
  36. 37.
    Yorke, H.W., Sonnhalter, C., 2002, ApJ 569, 846CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Max-Planck-Institut für AstronomieHeidelbergGermany
  2. 2.Astronomisches Recheninstitut am Zentrum für Astronomie HeidelbergHeidelbergGermany

Personalised recommendations