Skip to main content

Approximation Algorithms for Finding a Minimum Perimeter Polygon Intersecting a Set of Line Segments

  • Conference paper
Algorithms and Data Structures (WADS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5664))

Included in the following conference series:

Abstract

Let S denote a set of line segments in the plane. We say that a polygon P intersects S if every segment in S has a non-empty intersection with the interior or boundary of P. Currently, the best known algorithm finding a minimum perimeter polygon intersecting a set of line segments has a worst case exponential running time. It is also still unknown whether this problem is NP-hard. In this note we explore several approximation algorithms. We present efficient approximation algorithms that yield good empirical results, but can perform very poorly on pathological examples. We also present an O(n logn) algorithm with a guaranteed worst case performance bound that is at most π/2 times that of the optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment Voronoi diagrams. Information Processing Letters 100(6), 220–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhattacharya, B., Toussaint, G.: Computing shortest transversals. In: Proc. 18th Internat. Colloq. Automat. Lang. Program., pp. 649–660. Springer, Heidelberg (1991)

    Google Scholar 

  3. Burkard, R.E., Rote, G., Yao, E.Y., Yu, Z.L.: Shortest polygonal paths in space. Computing 45, 5–68 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete and Computational Geometry 16, 36–368 (1996)

    MathSciNet  Google Scholar 

  5. Czyzowicz, J., Egyed, P., Everett, H., Rappaport, D., Shermer, T.C., Souvaine, D.L., Toussaint, G.T., Urrutia, J.: The aquarium keeper’s problem. In: Symp. on Discrete Algorithms (SODA), pp. 459–464 (1999)

    Google Scholar 

  6. Goodrich, M., Snoeyink, J.: Stabbing parallel segments with a convex polygon. Comput. Vis. Graph. Image Process. 49, 152–170 (1990)

    Article  MATH  Google Scholar 

  7. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 1(4), 132–133 (1972)

    Article  MATH  Google Scholar 

  8. Hearn, D.W., Vijay, J.: Efficient algorithms for the (weighted) minimum circle problem. Operations Research 30(4), 777–795 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters 2, 18–21 (1973)

    Article  MATH  Google Scholar 

  10. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica (in press)

    Google Scholar 

  11. Löffler, M., van Kreveld, M.: Approximating largest convex hulls for imprecise points. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 89–102. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 446–457. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Meijer, H., Rappaport, D.: Minimum polygon covers of parallel line segments. In: Proc. 2nd Canadian Conference on Comp. Geom., pp. 324–327 (1990)

    Google Scholar 

  14. Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.: On intersecting a set of parallel line segments with a convex polygon of minimum area. Information Processing Letters 105, 58–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput. Geometry Appl. 5(3), 243–256 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tamir, A.: Improved complexity bounds for center location problems on networks by using dynamic data structures. SIAM J. Discrete Math. 1(3), 377–396 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hassanzadeh, F., Rappaport, D. (2009). Approximation Algorithms for Finding a Minimum Perimeter Polygon Intersecting a Set of Line Segments. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03367-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03366-7

  • Online ISBN: 978-3-642-03367-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics