Skip to main content

Optimal Embedding into Star Metrics

  • Conference paper
Algorithms and Data Structures (WADS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5664))

Included in the following conference series:

Abstract

We present an O(n 3 log2 n)-time algorithm for the following problem: given a finite metric space X, create a star-topology network with the points of X as its leaves, such that the distances in the star are at least as large as in X, with minimum dilation. As part of our algorithm, we solve in the same time bound the parametric negative cycle detection problem: given a directed graph with edge weights that are increasing linear functions of a parameter λ, find the smallest value of λ such that the graph contains no negative-weight cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.: On a routing problem. Quarterly in Applied Mathematics 16(1), 87–90 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carstensen, P.J.: Parametric cost shortest chain problem, Bellcore (manuscript) (1984)

    Google Scholar 

  3. Cheong, O., Haverkort, H., Lee, M.: Computing a minimum-dilation spanning tree is NP-hard. In: Proc. 13th Australasian Symp. Theory of Computing, pp. 15–24 (2007)

    Google Scholar 

  4. Dasdan, A., Irani, S., Gupta, R.: An experimental study of minimum mean cycle algorithms. Technical report, University of California, Irvine (1998)

    Google Scholar 

  5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  6. Dress, A.W.M., Huber, K.T., Moulton, V.: Metric spaces in pure and applied mathematics. In: Proc. Quadratic Forms LSU, Documenta Mathematica, pp. 121–139 (2001)

    Google Scholar 

  7. Drezner, Z., Hamacher, H.: Facility Location: Applications and Theory. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  8. Edmonds, J.: Embedding into \({L}_\infty^2\) is Easy, Embedding into \({L}_\infty^3\) is NP-Complete. Discrete and Computational Geometry 39(4), 747–765 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, ch. 9, pp. 425–461. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  10. Eppstein, D., Wortman, K.A.: Minimum dilation stars. Computational Geometry 37(1), 27–37 (2007); Special Issue on the Twenty-First Annual Symposium on Computational Geometry - SoCG 2005

    Article  MathSciNet  MATH  Google Scholar 

  11. Ford, L.R., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  12. Gusfield, D.: Sensitivity analysis for combinatorial optimization. Technical Report UCB/ERL M80/22, Electronics Research Laboratory, Berkeley (1980)

    Google Scholar 

  13. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23(3), 309–311 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, R.M., Orlin, J.B.: Parametric Shortest Path Algorithms with an Application to Cyclic Staffing. Technical Report OR 103-80, MIT Operations Research Center (1980)

    Google Scholar 

  15. Klein, R., Kutz, M.: Computing geometric minimum-dilation graphs Is NP-hard. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 196–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Linial, N.: Finite metric spaces–combinatorics, geometry and algorithms. In: Proc. International Congress of Mathematicians, Beijing, vol. 3, pp. 573–586 (2002)

    Google Scholar 

  17. Megiddo, N.: Combinatorial optimization with rational objective functions. In: Proc. 10th ACM Symp. Theory of computing, pp. 1–12. ACM Press, New York (1978)

    Google Scholar 

  18. Megiddo, N.: Applying Parallel Computation Algorithms in the Design of Serial Algorithms. J. ACM 30(4), 852–865 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Megiddo, N.: Towards a Genuinely Polynomial Algorithm for Linear Programming. SIAM Journal on Computing 12(2), 347–353 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Savage, C.: Parallel Algorithms for Graph Theoretic Problems. PhD thesis, University of Illinois, Urbana-Champaign (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppstein, D., Wortman, K.A. (2009). Optimal Embedding into Star Metrics. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03367-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03366-7

  • Online ISBN: 978-3-642-03367-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics