Skip to main content

Large Eddy Simulation of Turbulent Non-Premixed Jet Flames with a High Order Numerical Method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 71))

Abstract

In this chapter we will report on the Large Eddy Simulation (LES) of a turbulent non premixed jet flame. The numericalmodel used for the LES is based on a discretization with high order compact schemes. These schemes have a negligible amount of numerical dissipation. The subgrid terms in the compressible Navier-Stokes equations are modelled with simple eddy viscosity models. The LES model is used to simulate the Sandia Flame D.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Boersma, A staggered compact finite difference approach for the compressible Navier-Stokes equations, J. Comp. Phys., 208, 675, (2005)

    Article  MATH  Google Scholar 

  2. S.K. Lele, Compact finite differences with spectral-like resolution, J. Comp. Phys., 103, 16, (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Chu, C. Fan, A three point combined compact difference scheme, J. Comp. Phys., 140, 370, (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Nagarajan, S.K. Lele, J.H. Ferziger, A robust high-order compact method for large eddy simulation, J. Comp. Phys., 191, 392, (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. R.W.C.P. Verstappen, A.E.P. Veldman, Symmetry-preserving discretization of turbulent flow, J. Comp. Phys., 187, 343, (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, http://www.ca.sandia.gov/TNF/DataArch/FlameD.html

  7. H. Pitsch, H. Steiner, Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D), Phys. Fluids., 12, 2541, (2000)

    Article  Google Scholar 

  8. N. Branley, W.P. Jones, Large Eddy Simulation of a turbulent non-premixed flame, Comb. Flame, 127, 1914–1934, (2001)

    Article  Google Scholar 

  9. T. Poinsot, S.K. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comp. Phys., 101, 1042 (1992)

    MathSciNet  Google Scholar 

  10. C.S. Yoo, Y. Wang, A. Trouve, H.G. Im, Characteristic boundary conditions for direct simulations of turbulent counterflow flames, Comb. Th. Mod., 9, 617–646, (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Colonius, S.K. Lele, P. Moin, Boundary conditions for direct computation of aerodynamic sound computation, AIAA Journal, 31, 1574–1582, (1993)

    Article  MATH  Google Scholar 

  12. S. Ta'asan, D.M. Nark, An absorbing buffer zone technique for acoustic wave propagation, AIAA Paper 1995–0146, (1995)

    Google Scholar 

  13. J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comp. Phys., 114, 185–200, (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. J.B. Freund, Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA Journal tech. notes, 34, 740–742, (1997)

    Article  Google Scholar 

  15. D.J. Bodony, S.K. Lele, Jet noise prediction of cold and hot subsonic jets using Large-Eddy Simulation, AIAA Paper 2004–3022 (2004)

    Google Scholar 

  16. N. Peters, Turbulent Combustion, Cambridge University Press (2000)

    Google Scholar 

  17. K.K. Kuo, Principles of Combustion, John Wiley and sons (2005)

    Google Scholar 

  18. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, R.T. Edwards Inc. (2005)

    Google Scholar 

  19. R.A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids, 16, 3670 (2004)

    Article  Google Scholar 

  20. P.J. Coelho, O.J. Teerling and D. Roekaerts, Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame, Combust. Flame, 133, 75–91, (2003)

    Article  Google Scholar 

  21. A. Habibi, B. Merci and D. Roekaerts, Turbulence/radiation interaction in RANS simulations of non-premixed piloted turbulent laboratory scale flames, Combust. Flame, 151, 303–320, (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Boersma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Hoeven, S., Boersma, B.J., Roekaerts, D.J.E.M. (2009). Large Eddy Simulation of Turbulent Non-Premixed Jet Flames with a High Order Numerical Method. In: Koren, B., Vuik, K. (eds) Advanced Computational Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03344-5_9

Download citation

Publish with us

Policies and ethics