Skip to main content

Least-Squares Spectral Element Methods in Computational Fluid Dynamics

  • Conference paper
  • First Online:
Advanced Computational Methods in Science and Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 71))

Abstract

The least-squares spectral elementmethod (LSQSEM) is a relatively novel technique for the numerical approximation of the solution of partial differential equations. The method combines the weak formulation based on the minimization of a residual norm, the least-squares formulation, with the higher-order spectral element discretization. A well-posed least-squares formulation leads to a symmetric, positive-definite system of algebraic equations which are highly amenable to wellestablished solvers such as the preconditioned conjugate gradient method. Furthermore, the formulation is very robust in the sense that no stabilization operators are required to acquire convergent solutions. The spectral element discretization renders high order accuracy to the scheme. This new numerical scheme is applied to incompressible, compressible and non-Newtonian flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonso, A., Alves, M.A., Pinho, F.T., Oliveira, P.J.: Uniform flow of viscoelastic fluids past a confined falling cylinder. Rheol. Acta, 47, pp. 325–348, (2008)

    Article  Google Scholar 

  2. Alves, M.A., Pinho, F.T., Oliveira, P.J.: The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods. J. Non-Newtonian Fluid Mech., 97, pp. 207–232, (2001)

    Article  MATH  Google Scholar 

  3. Aziz, A.K., Kellogg, R.B., Stephens, A.B.: Least-squares methods for elliptic problems. Math. Comp., 44, pp. 53–77, (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berndt, M., Manteuffel, T.A., McCormick, S.F.: Local error estimation and adaptive refinement for first-order system least squares (FOSLS). Electron. Trans. Numer. Anal., 6, pp. 35–43, (1997)

    MATH  MathSciNet  Google Scholar 

  5. Björck, Å.: Least-squares methods. In: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, Solution of Equations in Rn, Part I, Vol. I, Elsevier, North Holland, Amsterdam, pp. 466–647, 1990.

    Google Scholar 

  6. Björck, Å.: The calculation of linear least squares problems. Acta Numer., 13, pp.1–53, (2004)

    MathSciNet  Google Scholar 

  7. Bochev, P.B., Gunzburger, M.D.: Accuracy of least-squares methods for the Navier-Stokes equations. Comput. Fluids, 22, pp. 549–563, (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bochev, P.B., Gunzburger, M.D.: Analysis of least-squares finite element methods for the Stokes equations. Math. Comp., 63, pp. 479–506, (1994).

    Article  MATH  MathSciNet  Google Scholar 

  9. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Springer Verlag. Applied Mathematical Series, Vol. 166, 2008

    Google Scholar 

  10. Bramble, J.H., Schatz, A.: Rayleigh-Ritz-Galerkin methods for Dirichlet's problem using sub-spaces without boundary conditions. Comm. Pure Appl. Math., 23, pp. 653–675, (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bramble, J.H., Schatz, A.: Least-squares for 2mth-order elliptic boundary-value problems. Math. Comp., 25, pp. 1–32, (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bramble, J.H., Lazarov, R.D., Pasciak, J.E.: Least-squares for second order elliptic problems. Computer Methods in Appl. Mech. Engrg. 152, pp. 195–210, (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer Verlag, New York, 1994.

    MATH  Google Scholar 

  14. Cai, Z., Lazarov, R., Manteuffel, T.A., McCormick, S.F.: First-order system least-squares for second-order partial differential equations: Part I. SIAM J. Numer. Anal., 31(6), pp. 1785–1799, (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluids Dynamics. Springer Verlag. 1988

    Google Scholar 

  16. Carey, G.F., Jiang, B.-N.: Least-squares finite element method and preconditioned conjugate gradient solution. Int. J. Numer. Methods Eng., 24, pp. 1283–1296, (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Coutanceau, M., Bouard, R.: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation, Part I. Journal of Fluid Mechanics, 79, (1977)

    Google Scholar 

  18. De Maerschalck, B., Gerritsma, M.I.: The use of Chebyshev polynomials in the space-time least-squares spectral element method. Numerical Algorithms, 38(1–3), pp. 155–172, (2005)

    MathSciNet  Google Scholar 

  19. De Maerschalck, B., Gerritsma, M.I.: Higher-order Gauss-Lobatto integration for non-linear hyperbolic equations. Journal of Scientific Computing. 27(1–3), pp. 201–214, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. De Maerschalck, B., Gerritsma, M.I., Proot, M.M.J.: Space-time least-squares spectral element methods for convection-dominated unsteady flows. AIAA Journal. 44(3), pp. 558–565, (2006).

    Article  Google Scholar 

  21. De Maerschalck, B., Gerritsma, M.I.: Least-squares spectral element method for non-linear hyperbolic differential equations. Journal of Computational and Applied Mathematics. 215, pp. 357–367, (2008).

    Article  MATH  MathSciNet  Google Scholar 

  22. Deville, M.O., Fischer, P.F., Mund, E.H.: High Order Methods for Incompressible Fluid Flow. Cambridge University Press, 2002

    Google Scholar 

  23. Dorao, C.A., Jakobsen, H.A.: A least-squares method for the solution of population balance problems. Computers and Chemical Engineering, 30,(3), pp. 535–547, (2005)

    Article  Google Scholar 

  24. Dorao, C.A., Jakobsen, H.A.: Application of the least-squares method for solving population balance problems in Rd+1c. Chemical Engineering Science, 61(15), pp. 5070–5081, (2006)

    Google Scholar 

  25. Dorao, C.A., Jakobsen, H.A.: Numerical calculation of moments of the population balance equation. Journal of Computational and Applied Mathematics, 196, pp. 619–633, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dorao, C.A., Jakobsen, H.A.: A parallel time-space least-squares spectral element solver for incompressible flow problems. Applied Mathematics and Computation, 185(23), pp. 45–58, (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dorao, C.A., Jakobsen, H.A.: Least-squares spectral method for solving advective population balance problems. Journal of Computational and Applied Mathematics, 201(1), pp. 247–257, (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dorao, C.A., Jakobsen, H.A.: hp-Adaptive least-squares spectral element method for population balance equations. Applied Numerical Mathematics, 58(5), pp. 563–576, (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dorao, C.A., Fernandino, M.: Simulation of transients in natural gas pipelines. Mathematics and Computers in Simulation. To appear.

    Google Scholar 

  30. Džiškariani, A.V.: The least-squares and Bubnov-Galerkin methods. Ž. Vyčisl. Mat. i. Mat. Fiz., 8, pp. 1110–1116, (1968)

    MATH  Google Scholar 

  31. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer Verlag, New York, 2004.

    MATH  Google Scholar 

  32. Galerkin, B.G.: Series solution of some problems in elastic equilibrium of rods and plates. Vestn. Inzh. Tech., 19, pp. 897–908, (1915)

    Google Scholar 

  33. Galvão, Á., Gerritsma, M.I., De Maerschalck, B.: hp-Adaptive least squares spectral element method for hyperbolic partial differential equations. Journal of Computational and Applied Mathematics. 215(2). pp. 409–418, (2008).

    Article  MATH  MathSciNet  Google Scholar 

  34. Gerritsma, M.I.: Direct minimization of the discontinuous least-squares spectral element method for viscoelastic fluids. Journal of Scientific Computing. 27(1–3), pp. 245–256, (2006).

    Article  MATH  MathSciNet  Google Scholar 

  35. Gerritsma, M.I., Phillips, T.N.: On the use of characteristics in viscoealastic flow problems. IMA J. Appl. Math., 66, pp. 127–147, (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gerritsma, M.I., Proot, M.M.J.: Analysis of a discontinuous least-squares spectral element method. Journal of Scientific Computing. 17(1–4), pp. 297–306, (2002).

    Article  MATH  MathSciNet  Google Scholar 

  37. Gerritsma, M.I., De Maerschalck, B.: The least-squares spectral element method. In: CFD – Higher Order Discretization Methods, VKI Lecture Series 2006–01, Von Karman Institute for Fluid Dynamics. Ed. by H. Deconinck and M. Ricchiuto, 2006.

    Google Scholar 

  38. Gerritsma, M.I., Van der Bas, R., De Maerschalck, B., Koren, B., Deconinck, H.: Least-squares spectral element method applied to the Euler equations, International Journal for Numerical Methods in Fluids., 57, pp. 1371–1395, (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gerritsma, M.I., Phillips, T.N.: On the characteristics and compatibility equations for the UCM model fluid. Z. Angew. Math. Mech., 88(7), 523–539, (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Gordon, W.J., Hall, C.A.: Transfinite element methods – blending-function interpolation over arbitrary curved element domains. Numerische Mathematik, 21(2), pp. 109–129, (1973)

    Article  MATH  MathSciNet  Google Scholar 

  41. De Groot, R.: Direct Minimization of Equation Residuals in Least-Squares hp- Finite Element Method – Numerical study of low Reynolds number flow around a circular cylinder. MSc-thesis, TU Delft, 2004.

    Google Scholar 

  42. Heinrichs, W.: Least-squares spectral collocation for discontinuous and singular perturbation problems. Journal of Computational and Applied Mathematics, 157(2), pp. 329–345, (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Heinrichs, W.: Least-squares spectral collocation for the Navier-Stokes equations. Journal of Scientific Computing, 21(1), pp. 81–90, (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Heinrichs, W.: Least-squares spectral collocation with the overlapping Schwartz method for the incompressible Navier-Stokes equations. Numerical Algorithms, 43(1), pp. 61–73, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Heinrichs, W.: An adaptive least-squares collocation method with triangular elements for the incompressible Navier-Stokes equations. Journal of Engineering Mathematics, 56(3), pp. 337–350, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Heinrichs, W.: An adaptive least-squares scheme for the Burgers' equation. Numerical Algorithms, 47(1), pp. 63–80, (2007)

    MathSciNet  Google Scholar 

  47. Heinrichs, W., Kattelans, T.: A direct solver for the least-squares spectral collocation system on rectangular elements for the incompressible Navier-Stokes equations. Journal of Computational Physics, 227(9), pp. 4776–4796, (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Henderson, R.D., Karniadakis, G.E.: Unstructured spectral methods for simulation of turbulent flows. J. Comput. Phys., 122, pp. 191–217, (1995)

    Article  MATH  Google Scholar 

  49. Hoitinga, W., De Groot, R., Kwakkel, M., Gerritsma, M.I.: Direct minimization of the least-squares spectral element functional – Part I: Direct Solver. Journal of Computational Physics, 227, pp. 2411–2429, (2008).

    Article  MATH  MathSciNet  Google Scholar 

  50. Houston, P., Senior, B., Süli, E.: Sobolev regularity estimation for hp-adaptive finite element methods. Report NA-02-02, University of Oxford, UK, 2002.

    Google Scholar 

  51. Jiang, B.-N.: The Least-Squares Finite Element Method – Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer Verlag, Scientific Computation, 1998.

    Google Scholar 

  52. Karniadakis, G.E, Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, 2002.

    Google Scholar 

  53. Kwakkel, M.: Time-dependent flow simulations using the least-squares spectral element – Application to unsteady incompressible Navier-Stokes flows. MSc-thesis, TU Delft, 2007.

    Google Scholar 

  54. Liu, J.-L.: Exact a-posteriori error analysis of the least-squares finite element method. Appl. Math. Comput., 116, pp. 297–305, (2000)

    Article  MATH  MathSciNet  Google Scholar 

  55. Lučka, A.: The rate of convergence to zero of the residual and the error in the Bubnov-Galerkin method and the method of least-squares. In Proc. Sem. Differential and Integral Equations, No. 1, pp. 113–122 (Russian) Akad, Nauk Ukrain. SSR Inst. Mat., Kiev, Ukraine, 1969

    Google Scholar 

  56. Maday, Y., Mavriplis, C., Patera, A.: Non-conforming mortar element methods: application to spectral discretizations. Domain Decomposition Methods, Proc. 2nd Int. Symp., Los Angeles, Califormia, pp. 392–418, (1988)

    Google Scholar 

  57. Pontaza, J.P.: Least-squares variational principles and the finite element method: Theory, formulations, and models for solid and fluid mechanics. Finite Elements in Analysis and Design, 41(7–8), pp. 703–728, (2005)

    Article  MathSciNet  Google Scholar 

  58. Pontaza, J.P.: A least-squares finite element formulation for unsteady incompressible flows with improved velocity-pressure coupling. J. Comput. Phys. 217(2), pp. 563–588, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  59. Pontaza, J.P.: A spectral element least-squares formulation for incompressible Navier-Stokes flows using triangular elements. Journal of Computational Physics, 221(2), pp. 649–665, (2007)

    Article  MATH  MathSciNet  Google Scholar 

  60. Pontaza, J.P.: A new consistent splitting scheme for incompressible Navier-Stokes flows: A least-squares spectral element implementation. Journal of Computational Physics, 225(2), pp. 1590–1602, (2007)

    Article  MATH  MathSciNet  Google Scholar 

  61. Pontaza, J.P., Reddy J.N.: Spectral/hp least-squares finite element formulation for the Navier-Stokes equations. J. Comput. Phys., 190(2), pp. 523–549, (2003)

    Article  MATH  MathSciNet  Google Scholar 

  62. Pontaza, J.P., Reddy J.N.: Mixed plate bending elements based on least-squares formulation. International Journal for Numerical Methods in Engineering, 60(5), pp. 891–922, (2004)

    Article  MATH  MathSciNet  Google Scholar 

  63. Pontaza, J.P., Reddy J.N.: Space-time coupled spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equations. J. Comput. Phys., 197(20), pp. 418–459, (2004)

    Article  MATH  MathSciNet  Google Scholar 

  64. Pontaza, J.P., Reddy J.N.: Least-squares finite elements for shear-deformable shells. Computer Methods in Applied Mechanics and Engineering, 194(21–24), pp. 2464–2493, (2005)

    Article  MATH  Google Scholar 

  65. Pontaza, J.P., Reddy J.N.: Least-squares finite element formulations for one-dimensional radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 95(3), pp. 387–406, (2005)

    Article  Google Scholar 

  66. Pontaza, J.P., Reddy J.N.: Least-squares finite element formulations for viscous incompressible and compressible fluid flows. Computer Methods in Applied Mechanics and Engineering, 195(19–22), pp. 2454–2494, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  67. Prabhhakar, V., Pontaza, J.P., Reddy, J.N.: A collocation penalty least-squares finite element formulation for incompressible flow. Computer Methods in Applied Mechanics and Engineering, 197(6–8), pp. 449–463, (2008)

    Article  MathSciNet  Google Scholar 

  68. Proot, M.M.J.: The least-squares spectral element method – Theory, Implementation and Application to Incompressible Flows. PhD thesis, TU Delft, 2003.

    Google Scholar 

  69. Proot, M.M.J., Gerritsma, M.I.: A least-squares spectral element formulation for the Stokes problem. Journal of Scientific Computing. 17(1–4), pp. 285–296, (2002).

    Article  MATH  MathSciNet  Google Scholar 

  70. Proot, M.M.J., Gerritsma, M.I.: Least-squares spectral elements applied to the Stokes problem. Journal of Computational Physics, 181(2), pp. 454–477, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  71. Proot, M.M.J., Gerritsma, M.I.: Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier-Stokes equations. Numerical Algorithms. 38(1–3), pp. 155–172, (2005).

    MATH  MathSciNet  Google Scholar 

  72. Proot, M.M.J., Gerritsma, M.I.: Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. Journal of Scientific Computing. 27(1–3), pp. 389–401, (2006).

    Article  MATH  MathSciNet  Google Scholar 

  73. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag, 1997.

    Google Scholar 

  74. Lord Rayleigh (J.W. Strut): On the theory of resonance. Trans. Roy. Soc., London, A161, pp. 77–118, 1870

    Google Scholar 

  75. Ritz, W.: Uber eine neue Methode zur Lösung gewisses Variationsprobleme der mathematischen Physik. J. Reine Angew. Math., 135, pp. 1–61, (1908)

    MATH  Google Scholar 

  76. Rizzi, A., Viviand, H.: Numerical Methods for the Computation of Inviscid Flows with Shock Waves. Vieweg Verlag, 1981.

    Google Scholar 

  77. Schwab, Ch.: p- and h-Finite Element Methods. Oxford Scientific Publications. 1998.

    Google Scholar 

  78. Spekreijse, S.P.: Multigrid Solution of the Steady Euler Equations. Stichting Mathematisch Centrum, Amsterdam, CWI Tracts, 46, 1988.

    Google Scholar 

  79. Spivak, M.: Calculus on Manifolds – A modern approach to classical theorems of advanced calculus. The Benjamin Cummings Publishing Company, 1965.

    Google Scholar 

  80. Sucker, D., Brauer, H.: Fluiddynamik bei quer angeströmten Zylindern, Wärme und Stoffübertragung, 8, pp. 149–158, (1975)

    Article  Google Scholar 

  81. Taneda, S.: Experimental investigation of the wake behind cylinders and plates at low Reynolds numbers. Journal of Physical Society of Japan, 11, pp. 302–307, (1956)

    Article  Google Scholar 

  82. Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6, pp. 547–567, (1959)

    Article  MATH  Google Scholar 

  83. White, F.M.: Viscous Fluid Flows. McGraw-Hill, Inc., 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gerritsma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerritsma, M., De Maerschalck, B. (2009). Least-Squares Spectral Element Methods in Computational Fluid Dynamics. In: Koren, B., Vuik, K. (eds) Advanced Computational Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03344-5_7

Download citation

Publish with us

Policies and ethics