Skip to main content

Data Assimilation Algorithms for Numerical Models

  • Conference paper
  • First Online:
Advanced Computational Methods in Science and Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 71))

Abstract

To understand and predict the behavior of a system one can use measurements or one can develop physically based numerical models. In many applications however neither of these approaches is able to provide an accurate description of the dynamic behavior of the system. A model is always a simplification of the real world while measurements seldom produce a complete picture of the system behaviour. Using data assimilation techniques measurements and model results are both used to obtain an optimal estimate of the state of the system. In this article we present an overview of methods available to assimilate data into a numerical model. Attention is concentrated on variational methods and on Kalman filtering. The main problem of using these advanced data assimilation schemes is the huge computational burden that is required for solving real life problems. For variational methods the adjoint model implementation is essential to obtain an efficient data assimilation algorithm. For Kalman filtering problems a number of approximate algorithms have been introduced recently: Ensemble Kalman filters and Reduced Rank filters. These algorithms make the application of Kalman filtering to large-scale data assimilation problems feasible. After a brief introduction to the most important data assimilation approaches we will discuss the advantages and disadvantages of the various methods and present a number of real life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.L., An ensemble adjustment Kalman filter for data assimilation, Mon. Weather. Rev., Vol. 129, 2001, 2884–2903

    Article  Google Scholar 

  • Bennett, A.F., Inverse modeling of the ocean and atmosphere, Cambridge University Press, UK, 2002.

    MATH  Google Scholar 

  • Bishop, C.H., and Etherton, B.J., and Majumdar, S.J., Adaptive sampling with the ensemble transform Kalman filter Part I: Theoretical aspects, Monthly Weather Review, Vol. 129, 2001, 420–436.

    Article  Google Scholar 

  • Booij, N., R.C. Ris, L.H. Holthuijsen, A third-generation wave model for coastal regions: 1. model description and validation, J. of Geoph. Research, Vol. 104, 1999, 7649–7666.

    Article  Google Scholar 

  • Byrd, R.H., J. Nocedal, R.B. Schnabel, Representations of quasi-Newton matrices and their use in limited memory methods, Mathematical Programming, Vol. 63, 1994, 129–156.

    Article  MathSciNet  Google Scholar 

  • EC, Council directive 96/62/ec of 27 September 1996 on ambient air quality assessment and management from EU air quality framework directive, Off. J. Eur. Commun., L, Legis, 1996, 296:55–63.

    Google Scholar 

  • Evensen G, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, JGR, 99(c5), 1994, 10143–10162.

    Article  Google Scholar 

  • Evensen, G., The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, Vol. 53, 2003, 343–367.

    Article  Google Scholar 

  • Gerritsen, H., de Vries, J., Philippart, M., The Dutch Continental Shelf model, in: Quantitative Skill Assessment for Coastal Ocean models, D. Lynch and A. Davies (eds.), Coastal and Estuarine Studies, Vol 47, 1995, pp. 425–267.

    Google Scholar 

  • Fletcher, R., C.M. Reeves, Function minimization by conjugate gradients, Computer Journal, Vol. 7, 1964, 149–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Hanea, R. G., G. J. M. Velders, A. Heemink, Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport model, J. Geophys, Vol. 109, 2004, D10302, doi:10.1029/2003JD004283.

    Article  Google Scholar 

  • Heemink, A. W., H. Kloosterhuis, Data assimilation for non-linear tidal models. –International Journal for Numerical Methods in Fluids, Vol. 11, 1990, 1097–1112.

    Article  MATH  Google Scholar 

  • Heemink, AW, and Metzelaar IDM, Data assimilation into a numerical shallow water flow model: a stochastic optimal control approach, J. Mar. Sys, Vol. 6, 1995, 145–158.

    Article  Google Scholar 

  • Heemink, A. W., M. Verlaan, A. J. Segers, Variance reduced Ensemble Kalman filtering, Mon. Weather Rev., Vol. 129, 2001, 1718–1728.

    Article  Google Scholar 

  • Kaminski T, et al., An example of an automatic differentiation-based modelling system, Lecture Notes in Computer Science 2668, 2003, 95–104.

    Article  Google Scholar 

  • Lelieveld, J., H. Berresheim, S. Borrmann, P.J. Crutzen, F.J. Dentener, H. Fischer, J. Feichter, P.J. Flatau, J. Heland, R. Holzinger, R. Korrmann, M.G. Lawrence, Z. Levin, K.M. Markowicz, N. Mihalopoulos, A. Minikin, V. Ramanathan, M. de Reus, G.J. Roelofs, H.A. Scheeren, J. Sciare, H. Schlager, M. Schultz, P. Siegmund, B. Steil, E.G. Stephanou, P. Stier, M. Traub, C. Warneke, J. Williams, and H. Ziereis, Global air pollution crossroads over the Mediterranean. Science, Vol. 201, 2002, 794–799.

    Article  Google Scholar 

  • Lermusiaux, P.F.J., and Robinson, A.R., Data assimilation via error subspace statistical estimation. Part I: Theory and schemes, Monthly Weather Review, Vol. 127, 1998, 1385–1407.

    Article  Google Scholar 

  • Lindström G., B. Johansson, M. Persson, M. Gardelin, S. Bergström, Development and test of the distributed HBV-96 hydrological model, Journal of Hydrology, Vol. 201, 1997, 272–288.

    Article  Google Scholar 

  • Matthijsen, J., L. Delobbe, F. Sauter, and L. de Waal, Changes of surface ozone over Europe upon the Gothenburg protocol abatement of 1990 reference emissions, Springer-Verlag, New York, 2001, 1384–1388.

    Google Scholar 

  • Mouthaan, E. E. A., A. W. Heemink, K. B. Robaczewska, Assimilation of ERS-1 altimeter data in a tidal model of the continental shelf, Deutsche Hydrographische Zeitschrift, Vol. 46, 285–319.

    Article  Google Scholar 

  • Nelder, J. A., R. Mead, A Simplex Method for Function Minimization, Computer Journal, Vol. 7, 1965, 308–313.

    MATH  Google Scholar 

  • Nocedal, J., Updating quasi-Newton matrices with limited storage, Mathematics of Computation, Vol. 35, 1980, 773–782.

    Article  MATH  MathSciNet  Google Scholar 

  • Pham, D. T. and J. Verron, and C.M. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography, Journal of Marine Systems, Vol. 16, 1998, 323–340.

    Article  Google Scholar 

  • Pul, W.A.J. van, J.A. van Jaarsveld, and C.M.J. Jacobs, Deposition of persistent organic pollutants over Europe. Air Pollution modelling and its application XI 1995, Baltimore, 1996.

    Google Scholar 

  • Ravindran SS, Control of flow separation over a forward-facing step by model reduction, Comp. Meth. in Applied Mechanics and Eng., Vol. 191, 2002, 4599–4617.

    Article  MATH  MathSciNet  Google Scholar 

  • Reggiani, P., J. Schellekens, Invited Commentary: Modelling of hydro-logic responses: The Representative Elementary Watershed (REW) approach as an alternative blueprint for watershed modelling, Hydrological Processes, Vol. 17, 2004, 3785–3789, DOI 10.1002/hyp.5167.

    Article  Google Scholar 

  • Rheineck Leyssius, H.J. van, F.A.A.M. de Leeuw, and B.H. Kessenboom, A regional scale model for the calculation of episodic concentrations and depositions of acidifying components, Water, Air and Soil Pollution, Vol. 51, 1990, 327–344.

    Google Scholar 

  • Schaap, M., H. A. C. Van Der Gon, F. J. Dentener, A. J. H. Visschedijk, M. Van Loon, H. M. ten Brink, J.-P. Putaud, B. Guillaume, C. Liousse, P. J. H. Builtjes, Anthropogenic black carbon and fine aerosol distribution over Europe, J. Geophys. Res., Vol. 109, D18207, doi:10.1029/2003JD004330.

    Google Scholar 

  • Segers, A.J., Data assimilation in atmospheric chemistry models using Kalman filtering, PhD thesis, Delft University of Technology, Delft, Netherlands, 2002.

    Google Scholar 

  • Stelling, G. S., On the construction of computational methods for shallow water flow problems. – Ph.D. thesis, Delft University of Technology, Rijkswaterstaat communications no. 35., 1984.

    Google Scholar 

  • Tippett M.K., Anderson J.L., Bishop C.H., et al., Ensemble square root filters Monthly Weather Rev., Volume 131, 2003, 1485–1490

    Article  Google Scholar 

  • Velzen, N. van, 2006: COSTA a Problem Solving Environment for Data Assimilation, Paper presented at CMWR XVI -Computational Methods in Water Resources, Copenhagen, Denmark, 2006.

    Google Scholar 

  • Velzen, N, van, M. Verlaan, COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling, Meteorologische Zeitschrift, Vol. 16, No. 6, 2007, 777–793, DOI 10.1127/0941–2948/2007/0241.

    Google Scholar 

  • Verlaan, M., Efficient Kalman Filtering Algorithms for Hydrodynamic Models, Ph.D. Thesis, Delft University of Technology, Netherlands, 1998.

    Google Scholar 

  • Verlaan, M., Heemink A.W., Tidal flow forecasting using Reduced-Rank Square Root filters, Stoch. Hydrology and Hydraulics, Vol. 11, 1997, 349–368.

    Article  MATH  Google Scholar 

  • Verlaan M., Heemink A.W., Nonlinearity in data assimilation applications: A practical method for analysis, Mon. Weather Rev., Vol. 129, 2001, 1578–1589.

    Article  Google Scholar 

  • Verlaan, M., E. E. A. Mouthaan, E. V. L. Kuijper, M.E. Philippart, Parameter estimation tools for shallow water flow models, Hydroinformatics, Vol. 96, 1996, 341–347.

    Google Scholar 

  • Vermeulen P.T.M., Heemink A.W., Model-reduced variational data assimilation, Mon. Weather Rev., Vol. 134 (10), 2006, 2888–2899.

    Article  Google Scholar 

  • Vermeulen P.T.M., Heemink A.W., Stroet C.B.M.T. te, Reduced models for linear groundwater flow models using EOFs, Adv. in Water Res. 27 (1), 2004, 57–69.

    Article  Google Scholar 

  • Whitaker, J. S., T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations, Mon. Wea. Rev., Vol. 130, 2002, 1913–1924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Heemink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heemink, A.W., Hanea, R.G., Sumihar, J., Roest, M., Velzen, N., Verlaan, M. (2009). Data Assimilation Algorithms for Numerical Models. In: Koren, B., Vuik, K. (eds) Advanced Computational Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03344-5_5

Download citation

Publish with us

Policies and ethics