Skip to main content

Time-Resolved, Electric-Field-Induced Domain Switching and Strain in Ferroelectric Ceramics and Crystals

  • Chapter
  • First Online:
Studying Kinetics with Neutrons

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 161))

Summary

Ferroelectric materials are used in a variety of applications including diagnostic and therapeutic ultrasound, sonar, vibration and displacement sensors, and non-volatile random access memory. The electromechanical response in ferroelectric materials is comprised of both intrinsic (piezoelectric lattice strain) and extrinsic (e.g., domain wall motion) components that are expressed as characteristic changes in the diffraction pattern. By applying slow, step-wise changes in the electric field, prior quasi-dynamic diffraction measurements have demonstrated both lattice strains and non-180 ∘  domain switching at fields exceeding the macroscopically defined coercive field. However, the loading conditions which most replicate real device operation involve dynamic actuation with sub-coercive, cyclic electric fields. At these operating conditions, extrinsic irreversibilities lead to hysteresis, frequency dispersion and nonlinearity of macroscopic properties. Observation of strain and domain switching at these cyclic loading conditions is an area in which we have reported recent advances using stroboscopic techniques. This chapter highlights the electric-field-induced lattice strain and kinetics of domain switching in a number of materials including technologically-relevant lead zirconate titanate (PZT) ceramics and relaxor single crystals. An outlook on the continuing use of time-resolved diffraction techniques in the characterization of ferroelectric materials is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While not exhaustive, the stoichiometry of key representative materials is provided in parenthesis as an aid to the reader.

References

  1. Piezoelectric Materials in Devices (Setter, Nava, Lausanne, Switzerland, 2002), p. 518

    Google Scholar 

  2. W. Cady, Piezoelectricity (1954)

    Google Scholar 

  3. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (R.A.N. Publishers, Marietta, OH, 1971), p. 317

    Google Scholar 

  4. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 2000) p. 340

    Google Scholar 

  5. J.L. Jones, B.J. Iverson, and K.J. Bowman, “Texture and Anisotropy of Polycrystalline Piezoelectrics,” Journal of the American Ceramic Society, Vol. 90, No. 8, pp. 2297–2314 (2007).

    Google Scholar 

  6. J.L. Jones, (2007) unpublished work

    Google Scholar 

  7. D.P. Riley, C.P. Oliver, E.H. Kisi, Intermetallics 14(1), 33–38 (2006)

    Article  Google Scholar 

  8. E.M. Larson, J. Wong, J.B. Holt, P.A. Waide, B. Rupp, Powder Diffraction 14(2), 111–113 (1999)

    ADS  Google Scholar 

  9. A.S. Rogachev, J.C. Gachon, H.E. Grigoryan, D. Vrel, J.C. Schuster, N.V. Sachkova, J. Mater. Sci. 40(9–10), 2689–2691 (2005)

    Google Scholar 

  10. C. Rischel, A. Rousse, I. Uschmann, P.A. Albouy, J.P. Geindre, P. Audebert, J.C. Gauthier, E. Forster, J.L. Martin, A. Antonetti, Nature 390(6659), 490–492 (1997)

    Google Scholar 

  11. A. Grigoriev, D.H. Do, D.M. Kim, C.B. Eom, B. Adams, E.M. Dufresne, P.G. Evans, Phys. Rev. Lett. 96(18), 187601 (2006)

    Article  ADS  Google Scholar 

  12. J.L. Jones, M. Hoffman, J.E. Daniels, A.J. Studer, Appl. Phys. Lett. 89, 092901 (2006)

    Article  ADS  Google Scholar 

  13. J.E. Daniels, T.R. Finlayson, A.J. Studer, M. Hoffman, J.L. Jones, J. Appl. Phys. 101, 094104 (2007)

    Article  ADS  Google Scholar 

  14. J.L. Jones, A. Pramanick, J.C. Nino, S.M. Motahari, E. Üstündag, M.R. Daymond, E. Oliver, Appl. Phys. Lett. 90, 172909 (2007)

    Article  ADS  Google Scholar 

  15. J.L. Jones, E.B. Slamovich, K.J. Bowman, J. Appl. Phys. 97, 034113 (2005)

    Article  ADS  Google Scholar 

  16. J.E. Daniels, J.L. Jones, T.R. Finlayson, J. Phys. D Appl. Phys. 39, 5294–5299 (2006)

    Article  ADS  Google Scholar 

  17. J.L. Jones, M. Hoffman, J. Am. Ceram. Soc. 89(12), 3721–3727 (2006)

    Article  Google Scholar 

  18. J.L. Jones, M. Hoffman, S.C. Vogel, Mech. Mater. 39, 283–290 (2007)

    Article  Google Scholar 

  19. J.L. Jones, M. Varlioglu, S.M. Motahari, U. Lienert, J. Bernier, M. Hoffman, E. Üstündag, Acta Mater. 55(16), 5538–5548 (2007)

    Article  Google Scholar 

  20. M. Davis, D. Damjanovic, N. Setter, Phys. Rev. B 73(1), 014115 (2006)

    Article  ADS  Google Scholar 

  21. J.R. Santisteban, M.R. Daymond, J.A. James, L. Edwards, J. Appl. Crystallogr. 39, 812–825 (2006)

    Article  Google Scholar 

  22. M.R. Daymond, P.J. Withers, Scripta Mater. 35(6), 717–720 (1996)

    Article  Google Scholar 

  23. J.L. Jones, J. Electroceramics 19(1), 67–79 (2007)

    Article  Google Scholar 

  24. D.A. Hall, A. Steuwer, B. Cherdhirunkorn, P.J. Withers, T. Mori, J. Mech. Phys. Solid 53(2), 249–260 (2005)

    Article  MATH  ADS  Google Scholar 

  25. R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84(23), 5423–5426 (2000)

    Article  ADS  Google Scholar 

  26. D.A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori, P.J. Withers, J. Appl. Phys. 96(8), 4245–4252 (2004)

    Google Scholar 

  27. M.J. Hoffmann, M. Hammer, A. Endriss, D.C. Lupascu, Acta Mater. 49(7), 1301–1310 (2001)

    Article  Google Scholar 

  28. W.W. Cao, Ferroelectrics 290, 107–114 (2003)

    Article  Google Scholar 

  29. B. Noheda, Z. Zhong, D.E. Cox, G. Shirane, S.E. Park, P. Rehrig, Phys. Rev. B 65(22), 224101 (2002)

    Article  ADS  Google Scholar 

  30. J.L. Jones, J.E. Daniels, unpublished work (2007)

    Google Scholar 

  31. J.E. Daniels, T.R. Finlayson, M. Davis, D. Damjanovic, A.J. Studer, M. Hoffman, and J.L. Jones, “Neutron diffraction study of the polarization reversal mechanism in [111]c-oriented Pb(Zn1/3Nb2/3)O3-xPbTiO3,” Journal of Applied Physics, Vol. 101, Art. No. 104108 (2007).

    Google Scholar 

  32. J.E. Daniels and M. Drakopoulos, “High-Energy X-Ray Diffraction Using the Pixium 4700 Flat Panel Detector,” J. Synchrotron. Rad., 16, 463-8 (2008).

    Article  Google Scholar 

  33. D.A. Hall, J.D.S. Evans, E.C. Oliver, P.J. Withers, T. Mori, Phil. Mag. Lett. 87(1), 41–52 (2007)

    Article  ADS  Google Scholar 

  34. H. He, X. Tan, Phys. Rev. B 72(2), 024102 (2005)

    Article  ADS  Google Scholar 

  35. R. Eitel, C. Randall, Phys. Rev. B 75, 094106 (2007)

    Article  ADS  Google Scholar 

  36. R. Herbiet, U. Robels, H. Dederichs, G. Arlt, Ferroelectrics 98, 107–121 (1989)

    Google Scholar 

  37. K. Uchino, S. Hirose, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 48(1), 307–321 (2001)

    Google Scholar 

  38. D. Damjanovic, in Hysteresis in Piezoelectric and Ferroelectric Materials, Ch. 4, ed. by I. Mayergoyz, G. Bertotti. The Science of Hysteresis, vol 3 (Elsevier, Amsterdam, 2005), pp. 337–465

    Google Scholar 

  39. A. Pramanick, J.C. Nino, J.L. Jones, unpublished work (2008)

    Google Scholar 

  40. R.E. Eitel, T.R. Shrout, C.A. Randall, J. Appl. Phys. 99(12), 124110 (2006)

    Article  ADS  Google Scholar 

  41. D. Damjanovic, S.S.N. Bharadwaja, N. Setter, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 120(1–3), 170–174 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, J.L., Nino, J.C., Pramanick, A., Daniels, J.E. (2009). Time-Resolved, Electric-Field-Induced Domain Switching and Strain in Ferroelectric Ceramics and Crystals. In: Eckold, G., Schober, H., Nagler, S. (eds) Studying Kinetics with Neutrons. Springer Series in Solid-State Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03309-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03309-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03308-7

  • Online ISBN: 978-3-642-03309-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics