Skip to main content

Kinetic Properties of Transformations Between Different Amorphous Ice Structures

Universality of the Formfactor Evolution as Studied by Neutron Wide Angle and Small Angle Scattering Experiments

  • Chapter
  • First Online:
Book cover Studying Kinetics with Neutrons

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 161))

Summary

We report on extensive kinetic experiments on different amorphous ice modifications of high density following their transformation at constant pressure and temperature into the low-density modification LDA. Monitoring the structural changes in situ by wide angle diffraction and small angle scattering experiments we establish the universal behavior of this transformation irrespective of the initial sample structure. The universality can be found in the formfactor changes as there is a strong peak in wide angle diffraction data shifting from high (2.2–2.4 Å − 1) to low Q numbers (1.7 Å − 1) whose width becomes transiently broadened reaching a maximum width close to the center of transformation. This broadening is generated by a pronounced heterogeneity of the sample, which can be directly monitored as a transient additional signal in the Q-range 0.04–0.6 Å − 1. Local density variations are the origin of the additional signal and the samples can be understood as structural mixtures in the course of the transformation. Only very high-density amorphous structures and LDA prove to be homogeneous samples. The high–density amorphous modification HDA, a structure considered as a reference in literature, is unequivocally heterogeneous and its grade of heterogeneity can be reproduced with high precision. At lowest momentum numbers Q < 0. 04 Å − 1 the formfactor follows the power–law Q  − 4 of Porod-limit scattering giving evidence of a grainy consistency of the samples with an average grain size of the order of 10 μm. Furthermore, the universality of the transformation can be found in the kinetic response of the samples. When extracting kinetic information from diffraction data two apparent stages, a sluggish conversion crossing over into a sharp sigmoid-shaped step, are intrinsic to the entire transformation process. This stages can be found reproduced in the time response of the intensity of Porod-limit scattering in the small angle data. However, the transient signal at intermediate Q marks the transformation as a single continuing process, which could be understood in the most simple case as a nucleation and growth of a structure A in a matrix B. We show, however, that the driving forces, i.e. activation energies, of transformations of different structures are different, indicating that despite a close resemblance of formfactors the samples occupy different minima on a potential energy landscape. The bandwidth of activation energies estimated in our experiments is 33–65 kJ mol − 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It must be noted that diffusion is hindered in the present amorphous solid–solid transformation and neither locally induced strain fields can be relieved by mass transport nor grain boundaries can move unperturbed as it should be expected in a hypothetical liquid–liquid transition. See for general considerations of solid–solid transitions [26].

  2. 2.

    The notation of a sharp or rapid transformation step which is often used in the present paper applies to the data plotted on a logarithmic time scale.

  3. 3.

    Note that grade or degree of heterogeneity is used here in a qualitative way of indicating the scattering intensity in the small angle region. A quantitative characterization on scientific grounds requires the identification of the SAS invariant, i.e., a measure of the sample contrast [40, 41].

  4. 4.

    There is a fundamental physical principle behind the relation of the transient excess SAS signal, the augmented width of peaks in WAD and the reduction of correlation length in the real space correlation function. We refer the interested reader to the principles of a multislit interference experiment [47]. Note, that the reduced correlation lengths of the SSH proved to be satisfactorily consistent when calculated from SAS, WAD and the real space Fourier transform as it is required [33, 34].

  5. 5.

    The phase space and energy resolution accessed in our inelastic scattering experiments [50, 51] result in a more stringent constraint for a minimum simulation box size and a minimum number of molecules of 1. 5 ×106.

References

  1. O. Mishima, L.D. Calvert, E. Whalley, Nature 310, 393 (1984)

    Article  ADS  Google Scholar 

  2. O. Mishima, Nature 384, 546–549 (1996)

    Article  ADS  Google Scholar 

  3. T. Loerting, C. Salzmann, I. Kohl, E. Mayer, Hallbrucker, A. Phys. Chem. Chem. Phys. 3, 5355–5357 (2001)

    Google Scholar 

  4. P.H. Poole, U. Essmann, F. Sciortino, H.E. Stanley, Phys. Rev. E 48, 4605–4610 (1993)

    Article  ADS  Google Scholar 

  5. S. Harrington, P.H. Poole, F. Sciortino, H.E. Stanley, J. Chem. Phys. 107, 7443 (1997)

    Article  ADS  Google Scholar 

  6. I. Brovchenko, A. Geiger, A. Oleinikova, J. Chem. Phys. 123, 044515 (2005)

    Article  ADS  Google Scholar 

  7. I. Brovchenko, A. Oleinikova, Chem. Phys. Chem. 9, 2660–2675 (2008)

    Google Scholar 

  8. A. Geiger, H.E. Stanley, Phys. Rev. Lett. 49, 1949 (1982)

    ADS  Google Scholar 

  9. S. Sastry, P. Debenedetti, F. Sciortino, H.E. Stanley, Phys. Rev. E 53, 6144 (1996)

    Article  ADS  Google Scholar 

  10. B. Guillot, Y. Guissani, J. Chem. Phys. 119, 11740 (2003)

    Article  ADS  Google Scholar 

  11. R. Martonak, D. Donadio, M. Parrinello, Phys. Rev. Lett. 92, 225702 (2004)

    Article  ADS  Google Scholar 

  12. R. Martonak, D. Donadio, M. Parrinello, J. Chem. Phys. 122, 134501 (2005)

    Article  ADS  Google Scholar 

  13. D. Paschek, A. Rüppert, A. Geiger, Chem. Phys. Chem. 9, 2737 (2008)

    Google Scholar 

  14. C.A. Tulk, C.J. Benmore, J. Irquidi, D.D. Klug, J. Neuefeind, B. Tomberli, P.A. Egelstaff, Science 297, 1320–1323 (2002)

    Article  ADS  Google Scholar 

  15. C.A. Tulk, R. Hart, D.D. Klug, C.J. Benmore, J. Neuefeind, Phys. Rev. Lett. 97, 115503 (2006)

    Article  ADS  Google Scholar 

  16. O. Mishima, L.D. Calvert, E. Whalley, Nature 314, 76 (1985)

    Article  ADS  Google Scholar 

  17. O. Mishima, K. Takemura, K. Aoki, Science 254, 406 (1991)

    Article  ADS  Google Scholar 

  18. S. Klotz, Th. Straessle, R.J. Nelmes, J.S. Loveday, G. Hamel, G. Rousse, B. Canny, J.C. Chervin, A.M. Saitta, Phys. Rev. Lett. 94, 25508 (2005)

    Article  Google Scholar 

  19. T. Loerting, W. Schustereder, K. Winkel, C. Salzmann, I. Kohl, E. Mayer, Phys. Rev. Lett. 96, 25702 (2005)

    Article  Google Scholar 

  20. T. Loerting, C. Salzmann, K. Winkel, E. Mayer, Phys. Chem. Chem. Phys. 8, 2810–2818 (2006)

    Article  Google Scholar 

  21. K. Winkel, M.S. Elsaesser, E. Mayer, T. Loerting, J. Chem. Phys. 128, 44510 (2008)

    Article  Google Scholar 

  22. K. Winkel, M. Bauer, E. Mayer, M. Seidl, M.S. Elsaesser, T. Loerting, J. Phys. Condens. Matter 20, 49212 (2008)

    Article  Google Scholar 

  23. H. Schober, M. Koza, A. Tölle, F. Fujara, C.A. Angell, R. Böhmer, Phys. B 241–243, 897–902 (1998)

    Google Scholar 

  24. G.P. Johari, O. Andersson, Thermochim. Acta 461, 14–43 (2007)

    Article  Google Scholar 

  25. M.M. Koza, R.P. May, T. Hansen, H. Schober, J. Appl. Cryst. 40, s517–s521 (2007)

    Article  Google Scholar 

  26. R.H. Doremus, Rates of Phase Transformations (Academic Press, London, 1985)

    Google Scholar 

  27. M.M. Koza, H. Schober, H.E. Fischer, T. Hansen, F. Fujara, J. Phys. Condens. Matter 15, 321–332 (2003)

    Article  ADS  Google Scholar 

  28. J.S. Tse, D.D. Klug, M. Guthrie, C.A. Tulk, C.J. Benmore, J. Urquidi, Phys. Rev. B 71, 214107 (2005)

    Article  ADS  Google Scholar 

  29. O. Mishima, Y. Suzuki, Nature 419, 599 (2002)

    Article  ADS  Google Scholar 

  30. R. Kurita, H. Tanaka, Science 306, 845–848 (2004)

    Article  ADS  Google Scholar 

  31. R. Kurita, H. Tanaka, J. Phys. Condens. Matter 17, L293–L302 (2005)

    Article  ADS  Google Scholar 

  32. J. Senker, J. Sehnert, S. Cornell, J. Am. Chem. Soc. 127, 337–349 (2005)

    Article  Google Scholar 

  33. M.M. Koza, B. Geil, K. Winkel, C. Köhler, F. Czeschka, M. Scheuermann, H. Schober, T. Hansen, Phys. Rev. Lett. 94, 125506 (2005)

    Article  ADS  Google Scholar 

  34. M.M. Koza, T. Hansen, R.P. May, H. Schober, J. Non-Cryst. Solid. 352, 4988–4993 (2006)

    Google Scholar 

  35. C. Alba-Simionesco, G. Tarjus, Europhys. Lett. 52, 297–303 (2000)

    Article  ADS  Google Scholar 

  36. H. Schober, M.M. Koza, A. Tölle, C. Masciovecchio, F. Sette, F. Fujara, Phys. Rev. Lett. 85, 4100–4103 (2000)

    Article  ADS  Google Scholar 

  37. Y. Suzuki, Y. Takasaki, Y. Tominaga, O. Mishima, Chem. Phys. Lett. 319, 81–84 (2000)

    Article  ADS  Google Scholar 

  38. T.C. Hansen, M.M. Koza, W.F. Kuhs, J. Phys. Condens. Matter 20, 285104-1–285104-12 (2008)

    Google Scholar 

  39. T.C. Hansen, M.M. Koza, P. Lindner, W.F. Kuhs, J. Phys. Condens. Matter 20, 285105-1–285105-14 (2008)

    Google Scholar 

  40. O. Glatter, O. Kratky, Small Angle X-ray Scattering (Academic Press, London, 1982)

    Google Scholar 

  41. P. Lindner, T. Zemb, Neutron, X-Ray and Light Scattering (North-Holland, Amsterdam, 2002)

    Google Scholar 

  42. N. Giovambattista, H.E. Stanley, F. Sciortino, Phys. Rev. Lett. 91, 115504 (2003)

    Article  ADS  Google Scholar 

  43. M. Scheuermann, B. Geil, K. Winkel, F. Fujara, J. Chem. Phys. 124, 224503 (2006)

    Article  ADS  Google Scholar 

  44. R.J. Nelmes, J.S. Loveday, Th. Straessle, C.L. Bull, M. Guthrie, G. Hamel, S. Klotz, Nat. Phys. 2, 414 (2006)

    Article  Google Scholar 

  45. C.G. Salzmann, T. Loerting, S. Klotz, P.W. Mirwald, A. Hallbrucker, E. Mayer, Phys. Chem. Chem. Phys. 8, 386–397 (2006)

    Article  Google Scholar 

  46. M. Guthrie, C.A. Tulk, C.J. Benmore, D.D. Klug, Chem. Phys. Lett. 397, 335–339 (2004)

    Article  ADS  Google Scholar 

  47. E. Hecht, Optics (Pearson), ISBN-13: 9780805385663

    Google Scholar 

  48. G.P. Johari, O. Andersson, Phys. Rev. B 76, 134103 (2007)

    Article  ADS  Google Scholar 

  49. Y.P. Handa, O. Mishima, E. Whalley, J. Chem. Phys. 84, 2766–2770 (1986)

    Google Scholar 

  50. M.M. Koza, Phys. Rev. B 78, 064303 (2008)

    Article  ADS  Google Scholar 

  51. M.M. Koza, B. Geil, M. Scheuermann, H. Schober, G. Monaco, H. Requardt, Phys. Rev. B 78, 224301 (2008)

    Article  ADS  Google Scholar 

  52. M. Guthrie, J. Urquidi, C.A. Tulk, C.J. Benmore, D.D. Klug, J. Neuefeind, Phys. Rev. B 68, 184110 (2003)

    Article  ADS  Google Scholar 

  53. O. Mishima, J. Chem. Phys. 100, 5910–5912 (1994)

    Google Scholar 

  54. O. Andersson, Phys. Condens. Matter 20, 244115 (2008)

    Article  ADS  Google Scholar 

  55. N. Giovambattista, H.E. Stanley, F. Sciortino, Phys. Rev. Lett. 94, 107803 (2004)

    Article  ADS  Google Scholar 

  56. N. Giovambattista, H.E. Stanley, F. Sciortino, Phys. Rev. E 72, 31510 (2005)

    Article  ADS  Google Scholar 

  57. A. Soper, Mol. Phys. 106, 2053 (2008)

    Article  ADS  Google Scholar 

  58. D.D. Klug, E. Whalley, E.C. Svensson, J.H. Root, V.F. Sears, Phys. Rev. B 44, 841 (1991)

    Article  ADS  Google Scholar 

  59. M.M. Koza, B. Geil, H. Schober, F. Natali, Phys. Chem. Chem. Phys. 7, 1423 (2005)

    Article  Google Scholar 

  60. N.I. Agladze, A.J. Sievers, Phys. Rev. Lett. 80, 4209 (1998)

    Article  ADS  Google Scholar 

  61. O. Yamamuro, Y. Madokoro, H. Yamasaki, T. Matsuo, J. Chem. Phys. 115, 9808 (2001)

    Article  ADS  Google Scholar 

  62. V.V. Brazhkin, A.G. Lyapin, O.V. Stalgorova, E.L. Gromnitskaya, S.V. Popova, O.B. Tsiok, J. Non-Cryst. Solid. 212, 49–54 (1997)

    Google Scholar 

  63. O.V. Stalgorova, E.L. Gromnitskaya, V.V. Brazhkin, A.G. Lyapin, JETP lett. 69, 694 (1999)

    Article  ADS  Google Scholar 

  64. E.L. Gromnitskaya, O.V. Stalgorova, V.V. Brazhkin, A.G. Lyapin, Phys. Rev. B 64, 94205 (2001)

    Article  ADS  Google Scholar 

  65. E.L. Gromnitskaya, O.V. Stalgorova, A.G. Lyapin, O.B. Tarutin, JETP Lett. 78, 488–492 (2003)

    Article  ADS  Google Scholar 

  66. O. Andersson, H. Suga, Phys. Rev. B 65, 140201(R) (2001)

    Google Scholar 

  67. G.P. Johari, O. Andersson, J. Chem. Phys. 120, 6207 (2004)

    Article  ADS  Google Scholar 

  68. Johari, G.P. & Andersson, O., Phys. Rev. B 70, (2004) 184108.

    Article  ADS  Google Scholar 

  69. O. Andersson, A. Inaba, J. Chem. Phys. 122, 124710 (2005)

    Article  ADS  Google Scholar 

  70. O. Andersson, A. Inaba, Phys. Chem. Chem. Phys. 7, 1441 (2005)

    Article  Google Scholar 

  71. J.S. Tse, D.D. Klug, C.A. Tulk, I. Swainson, E.C. Svensson, C.K. Loong, V. Shpakov, V.R. Belosludov, R.V. Belosludov, Y. Kawazoe, Nature 400, 647 (1999)

    Article  ADS  Google Scholar 

  72. Th. Straessle, A.M. Saitta, S. Klotz, M. Braden, Phys. Rev. Lett. 93, 225901 (2004)

    Article  ADS  Google Scholar 

  73. Th. Straessle, S. Klotz, G. Hamel, M.M. Koza, H. Schober, Phys. Rev. Lett. 99, 175501 (2007)

    Article  ADS  Google Scholar 

  74. M.M. Koza, H. Schober, S.F. Parker, J. Peters, Phys. Rev. B 77, 104306 (2008)

    Article  ADS  Google Scholar 

  75. P.G. Debenedetti, J. Phys. Condens. Matter 15, R1669 (2003)

    Article  ADS  Google Scholar 

  76. H. Tanaka, Europhys. Lett. 50, 340–346 (2000)

    Article  ADS  Google Scholar 

  77. R. Ludwig, Angew. Chem. Int. Ed. 45, 3402–3405 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Marek Koza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koza, M.M., Hansen, T., May, R.P., Schober, H. (2009). Kinetic Properties of Transformations Between Different Amorphous Ice Structures. In: Eckold, G., Schober, H., Nagler, S. (eds) Studying Kinetics with Neutrons. Springer Series in Solid-State Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03309-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03309-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03308-7

  • Online ISBN: 978-3-642-03309-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics