Skip to main content

Nanoparticle Formation by Femtosecond Laser Ablation

  • Chapter
  • First Online:
Laser-Surface Interactions for New Materials Production

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 130))

Summary

Ultra short femtosecond (fs) pulses for the laser ablation of materials lead to deposited films which are very different from those obtained by the well-known classical nanosecond (ns) pulsed laser deposition (PLD). In very specific cases, epitaxial thin films can be obtained, whereas in the majority of materials, the films formed by fs PLD are constituted by the random stacking of nanoparticles (Nps) in the 10–100 nm size range. As a result, fs PLD has been rapidly considered as a viable and efficient method for the synthesis of Nps of a wide range of materials presenting interesting physical properties and potential applications. The Np synthesis by fs laser ablation has been studied, and theoretical investigations have been reported to establish their formation mechanisms. Two possibilities can be assumed to explain the Np synthesis: direct cluster ejection from the target or collisional sticking and aggregation in the ablated plume flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B. Chrisey, G.K. Hubler (eds), Pulsed-Laser Deposition of Thin Films (Wiley, New York, 1994), p. 229

    Google Scholar 

  2. Z. Zhang, P.A. Van Rompay, P.A. Nees, J.A. Stewart, C.A. Pan, X.Q. Fu, P.P. Pronko, SPIE Proc. 3935, 86 (1999)

    Article  ADS  Google Scholar 

  3. R. Eason (ed.), Pulsed-Laser Deposition of Thin Films, Application Led-Growth of Functional Materials (Wiley-Interscience, Hoboken, NJ, 2006), p. 261

    Google Scholar 

  4. C. Boulmer-Leborgne, B. Benzerga, J. Perrière, SPIE Proc. 6261, 20 (2006)

    Google Scholar 

  5. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, Phys. Rev. B 71, 033406 (2005)

    Article  ADS  Google Scholar 

  6. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, Europhys. Lett. 67, 404 (2004)

    Article  ADS  Google Scholar 

  7. T. Trelenberg, L. Dinh, C. Saw, B. Stuart, M. Balooch, Appl. Surf. Sci. 221, 364 (2004)

    Article  ADS  Google Scholar 

  8. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boumer-Leborgne, J. Perrière, E. Millon, Appl. Phys. A 76, 319 (2003)

    Article  ADS  Google Scholar 

  9. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, S. Fraenckel, M. Maman, Y. Lereah, Phys. Rev. B 69, 144119 (2004)

    Article  ADS  Google Scholar 

  10. S. Amoruso, R. Bruzzese, M. Vitiello, N. Nedialkov, P. Atanasov, J. Appl. Phys. 98, 044907 (2005)

    Article  ADS  Google Scholar 

  11. B. Liu, Z. Hu, Y. Che, Y. Chen, X. Pan, Appl. Phys. Lett. 90, 044103 (2007)

    Article  ADS  Google Scholar 

  12. D. Perez, L. Lewis, Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  13. S. Amoruso, R. Bruzzese, X. Wang, N. Nedialkov, P. Atanasov, J. Phys. Appl. Phys. 40, 331 (2007)

    ADS  Google Scholar 

  14. J. Perrière, E. Millon, M. Chamarro, M. Morcrette, C. Andreazza, Appl. Phys. Lett. 78, 2949 (2001)

    Article  ADS  Google Scholar 

  15. L. Zhigilei, Appl. Phys. A 76, 339 (2003)

    Article  ADS  Google Scholar 

  16. B. Holian, D. Grady, Phys. Rev. Lett. 60, 1355 (1988)

    Article  ADS  Google Scholar 

  17. D. Perez, L. Lewis, Phys. Rev. Lett. 89, 255504 (2002)

    Article  ADS  Google Scholar 

  18. L. Doolittle, Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985)

    Article  ADS  Google Scholar 

  19. F. Vidal, T.W. Johnson, S. Laville, O. Barthelemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, Phys. Rev. Lett. 86, 2573 (2001)

    Article  ADS  Google Scholar 

  20. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62, 13167 (2000)

    Article  ADS  Google Scholar 

  21. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. Hertel, N.M. Bulgakova, E.E.B. Campbell, Phys. Rev. Lett. 88, 097603 (2002)

    Article  ADS  Google Scholar 

  22. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, N. Spinelli, R. Velotta, Appl. Surf. Sci. 186, 358 (2002)

    Article  ADS  Google Scholar 

  23. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ansiano, V. Ianotti, L. Lanotte, Appl. Phys. Lett. 84, 4502 (2004)

    Article  ADS  Google Scholar 

  24. T. Glover, G. Ackerman, A. Belkacem, P. Heimann, Z. Hussain, R. Lee, H. Padmore, C. Ray, R. Schoenlein, W. Steele, D. Young, Phys. Rev. Lett. 90, 236102 (2003)

    Article  ADS  Google Scholar 

  25. I. Weerasekera, S. Ismat Shah, D. Baxter, K. Unruh, Appl. Phys. Lett. 64, 3231 (1994)

    Article  ADS  Google Scholar 

  26. E. Millon, J. Perrière, R.M. Defourneau, D. Defourneau, O. Albert, J. Etchepar, Appl. Phys. A 77, 73 (2003)

    Article  ADS  Google Scholar 

  27. J. Gonzalo, R. Gomez-San Roman, J. Perrière, C. Afonso, R. Perez-Casero, Appl. Phys. A 66, 487 (1998)

    Article  ADS  Google Scholar 

  28. T. Trelenberg, L. Dinh, B. Stuart, M. Baboch, Appl. Surf. Sci. 229, 268 (2004)

    Article  ADS  Google Scholar 

  29. B. Tull, J. Carey, M. Sheehy, C. Friend, E. Mazur, Appl. Phys. A 83, 341 (2006)

    Article  ADS  Google Scholar 

  30. J. Koch, A. von Bohlen, R. Hergenröder, K. Niemax, J. Anal. Spectrom. 19, 267 (2004)

    Article  Google Scholar 

  31. O. Hagena, Rev. Sci. Instrum. 63, 2374 (1992)

    Article  ADS  Google Scholar 

  32. T. Ditmire, T. Donnely, A. Rubenchik, R. Falcone, M.D. Perry, Phys. Rev A 53, 3379 (1996)

    Article  ADS  Google Scholar 

  33. R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990)

    Article  ADS  Google Scholar 

  34. S. Anisimov, D. Bäuerle, B. Luk’yanchuk, Phys. Rev. B 48, 12076 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank O. Albert and J. Etchepare for the use of the femtosecond laser facility in LOA laboratory (ENSTA), Palaiseau, France and their fruitful collaboration in this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boulmer-Leborgne, C., Benzerga, R., Perrière, J. (2010). Nanoparticle Formation by Femtosecond Laser Ablation. In: Miotello, A., Ossi, P. (eds) Laser-Surface Interactions for New Materials Production. Springer Series in Materials Science, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03307-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03307-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03306-3

  • Online ISBN: 978-3-642-03307-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics