Skip to main content

Basic Physics of Femtosecond Laser Ablation

  • Chapter
  • First Online:
Laser-Surface Interactions for New Materials Production

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 130))

Summary

Laser ablation being the basic process for many prominent applications of lasers in present day high technology, medicine, and other fields, its basic physics is reviewed in this chapter. In order to distinguish the fundamental, laser–material interaction from the secondary effects, we concentrate on ultrashort laser pulses ( ≈ 100 fs duration) at comparably low intensities, below the commonly indicated threshold for massive material removal. It is shown that – for these conditions – the principal light/matter coupling occurs via multiphoton excitation of electrons into the conduction band or the vacuum. The resulting perturbation of the target lattice results in the emission of positive particles, from atomic ions to larger clusters of more than ten atoms. With the increasing number of incident pulses, the light/material coupling is facilitated by the accumulation of transient crystal defects resulting from particle removal. On the other hand, the lattice destabilization, upon excitation and ablation, relaxes via self-organized formation of regular nanostructures at the irradiated area. The strong influence of laser polarization on the structural order is still not really understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Srinivasan, V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982); R. Srinivasan, W.J. Leigh, J. Am. Chem. Soc. 104, 6784 (1982)

    Google Scholar 

  2. See, e.g. the proceedings of the Conferences on Laser Ablation (COLA): J.C. Miller, R.F. Haglund (eds), Laser Ablation: Mechanisms and Applications. Lecture notes in Physics, vol 389 (Springer, Heidelberg, 1991) J.C. Miller, D.B. Geohegan (eds), Laser Ablation: Mechanisms and Applications – II, AIP Conference Proceedings, vol 288 (American Institute of Physics, New York, 1994) E. Fogarassy, D. B. Geohegan, M. Stuke (eds), in Proceedings of Symposium F: Third International Symposium on Laser Ablation of the 1995 E-MRS Spring Conference, Appl. Surf. Sci. 96–98, 1 (1996) R.E. Russo, D.B. Geohegan, R.F. Haglund Jr, K. Murakami (eds), in Proceedings of the 4th Conference on Laser Ablation, Appl. Surf. Sci. 127–129, 1 (1998) J.S. Horwitz, H.U. Krebs, K. Murakami, M. Stuke (eds), Laser Ablation V, Appl. Phys. A 69, Supplement 1 (1999) K. Murakami, A. Yabe, J.S. Horwitz, C. Fotakis, J.T. Dickinson (eds), in Proceedings of the 6th Conference on Laser Ablation, Appl. Surf. Sci. 197–198, 1 (2002) C. Fotakis, H. Koinuma, D. Lowndes, M. Stuke (eds), Laser Ablation VII, Appl. Phys A 79, 713 (2004) B. Luk’yanchuk, S. Juodkazis, T. Lippert (eds), Special Issue: Laser Ablation Fundamentals, Appl. Phys. A 92, 743 (2008)

    Google Scholar 

  3. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Phys. Rev. B, 61, 11437 (2000); L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964); [Sov. Phys.-JETP 20, 1307 (1965)]

    Google Scholar 

  4. A. Zangwill, Physics at Surfaces (Cambridge University Press, 1988)

    Google Scholar 

  5. J. Reif, F. Costache, O. Varlamova, S. Eckert, in Advanced Laser Technologies 2006, ed. by D.C. Dumitras, M. Dinescu, V.I. Konov (SPIE-International Society for Optical Engineering, Bellingham, 2007)

    Google Scholar 

  6. J. Reif, F. Costache, in Advances in Atomic, Molecular and Optical Physics, 53, ed. by M.O. Scully, G. Rempe (Academic Press, 2006), pp. 228–249

    Google Scholar 

  7. M. Henyk, D. Wolfframm, J. Reif, Appl. Surf. Sci. 168, 263–266 (2000)

    Article  ADS  Google Scholar 

  8. E. Matthias, H.B. Nielsen, J. Reif, A. Rosén, E. Westin, J. Vac. Sci. Technol. B5, 1415 (1987); A. Rosén, E. Westin, E. Matthias, H.B. Nielsen, J. Reif, Phys. Scripta T23, 184 (1988)

    Google Scholar 

  9. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Phys. Rev. B 65, 092103 (2002)

    Article  ADS  Google Scholar 

  10. M. Henyk, J. Reif, Appl. Surf. Sci. 208–209, 71 (2003)

    Article  Google Scholar 

  11. F. Costache, S. Kouteva-Arguirova, J. Reif, Appl. Phys. A 79, 1429 (2004)

    Article  ADS  Google Scholar 

  12. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996); J. Bonse, S. Baudach, J. Krüger, W. Kautek,M. Lenzner, Appl. Phys. A 74, 19 (2002)

    Google Scholar 

  13. M. Henyk, R. Mitzner, D. Wolfframm, J. Reif, Appl. Surf. Sci. 154–155, 249 (2000)

    Article  Google Scholar 

  14. M. Terasawa, Z.A. Insepov, T. Sekioka, A.A. Valuev, T. Mitamura, Nucl. Instr. Meth. B 212, 436 (2003); H.P. Cheng, J.D. Gillaspy, Phys. Rev. B 55, 2628 (1997)

    Google Scholar 

  15. W.G. Roeterdink, L.B.F. Juurlink, O.P.H. Vaughan, J. Dura Diez, M. Bonn, A.W. Kleyn, Appl. Phys. Lett. 82, 4190 (2003)

    Article  ADS  Google Scholar 

  16. J. Reif, Opt. Eng. 28, 1122 (1989)

    Google Scholar 

  17. J. Reif, M. Henyk, D. Wolfframm, SPIE Proceeding Series 3933, 26 (2000)

    Article  ADS  Google Scholar 

  18. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62, 13167 (2000); R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Phys. Rev. Lett. 88, 097603 (2002)

    Google Scholar 

  19. R. Kelly, A. Miotello, Appl. Surf. Sci. 96, 205 (1995)

    Article  ADS  Google Scholar 

  20. N. Itoh, Adv. Phys. 31, 491 (1982); N. Itoh, T. Nakayama, Phys. Lett. 92A, 471 (1982); K. Tanimura, Phys. Rev. B 63, 184303 (2001)

    Google Scholar 

  21. Y. Jee, K. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)

    Article  ADS  Google Scholar 

  22. S. Petzoldt, A.P. Elg, J. Reif, E. Matthias, SPIE Proceeding Series 1438, 180 (1989)

    Google Scholar 

  23. F. Costache, S. Eckert, J. Reif, Appl. Phys. A 92, 897 (2008)

    Article  ADS  Google Scholar 

  24. M. Henyk, D. Wolfframm, J. Reif, Nucl. Instr. Meth. B 166–167, 716 (2000)

    Article  Google Scholar 

  25. M. Henyk, F. Costache, J. Reif, Appl. Surf. Sci. 186, 381 (2002)

    Article  ADS  Google Scholar 

  26. J. Reif, F. Costache, S. Eckert, J. Phys.: Conf. Ser. 59, 1 (2007)

    Google Scholar 

  27. V. Schmidt, W. Husinsky, G. Betz, Phys. Rev. Lett. 85, 3516 (2000)

    Article  ADS  Google Scholar 

  28. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Sigrist, G. Kaech, F.K. Kneubühl, Appl. Phys. 2, 45 (1973)

    Article  ADS  Google Scholar 

  30. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983); J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983); J.F. Young, J.E. Sipe, H.M. van Driel, Phys. Rev. B 30, 2002 (1984)

    Google Scholar 

  31. J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Phys. Rev. Lett. 82, 2330 (1999)

    Article  ADS  Google Scholar 

  32. J. Reif, F. Costache, M. Bestehorn, Chap. 9 in Recent Advances in Laser Processing of Materials, ed. by J. Perrière, E. Millon, E. Fogarassy (E-MRS/Elsevier, Oxford, 2006)

    Google Scholar 

  33. T. Aste, U. Valbusa, New J. Phys. 7, 122 (2005)

    Article  ADS  Google Scholar 

  34. P. Sigmund, Phys. Rev. 184, 383 (1969); P. Sigmund, J. Mater. Sci. 8, 1545 (1973)

    Google Scholar 

  35. H.O. Jeschke, M.E. Garcia, M. Lenzner, J. Bonse, J. Krüger, W. Kautek, Appl. Surf. Sci. 197–198, 839 (2002)

    Article  Google Scholar 

  36. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)

    Article  ADS  Google Scholar 

  37. A. Lindenberg, S. Engemann, K. Gaffney, K. Sokolowski-Tinten, J. Larsson, P. Hillyard, D. Reis, D. Fritz, J. Arthur, R. Akre, M. George, A. Deb, P. Bucksbaum, J. Hajdu, D. Meyer, M. Nicoul, C. Blome, Th. Tschentscher, A. Cavalieri, R. Falcone, S. Lee, R. Pahl, J. Rudati, P. Fuoss, A. Nelson, P. Krejcik, D. Siddons, P. Lorazo, J. Hastings, Phys. Rev. Lett. 100, 135502 (2008)

    Article  ADS  Google Scholar 

  38. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984); J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Google Scholar 

  39. M. Ratzke, O. Varlamova, F. Costache, J. Reif, Mat. Sci. Eng. B 134, 114 (2006)

    Article  Google Scholar 

  40. R. Wagner, J. Gottmann, A. Horn, E.W. Kreutz, Appl. Surf. Sci. 252, 8576 (2006)

    Article  ADS  Google Scholar 

  41. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, Opt. Lasers Eng. 45, 737 (2007)

    Article  Google Scholar 

  42. O. Varlamova, F. Costache, M. Ratzke, J. Reif, Appl. Surf. Sci. 253, 7932 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author greatly appreciates the fruitful and congenial collaboration with Florenta Costache, Olga Varlamova, Markus Ratzke, and Michael Bestehorn. Profitable discussion and interaction within the Cottbus JointLab is greatly appreciated. This work was, in part, supported by a special grant from the Land of Brandenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Reif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reif, J. (2010). Basic Physics of Femtosecond Laser Ablation. In: Miotello, A., Ossi, P. (eds) Laser-Surface Interactions for New Materials Production. Springer Series in Materials Science, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03307-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03307-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03306-3

  • Online ISBN: 978-3-642-03307-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics