Advertisement

Ultrafast Laser Processing of Glass Down to the Nano-Scale

  • Koji Sugioka
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 130)

Summary

Ultrafast lasers can induce strong absorption in materials and even in transparent materials, due to nonlinear multiphoton absorption. By using this phenomenon, surface microstructuring and dicing of glass are successfully demonstrated. When the ultrafast laser is focused inside a transparent material with adequate pulse energies, absorption can be confined to a region near the focus point allowing for internal processing of the transparent material such as three-dimensional (3D) optical waveguide writing and fabrication of micro-optical components and microchannels buried inside the glass. Another important feature of ultrafast lasers is the suppression of heat diffusion to the surroundings of the processed area, which makes nanoscale fabrication possible. In addition, nonlinear multiphoton absorption can further improve the spatial resolution beyond that of the laser. In this chapter, the features of ultrafast laser processing are first described and clarified. Then, some relevant topics of glass processing including nanoscale fabrication are reviewed.

Keywords

Photonic Crystal Fuse Silica Optical Waveguide Transparent Material Ultrafast Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Haight, D. Hayden, P. Longo, T.E. Neary, A. Wagner, J. Vac. Sci. Technol. B17, 3137 (1999)Google Scholar
  2. 2.
    C.H. Chen, X.B. Liu, in Proceedings of ICALEO 2005 (Laser Institute of America, Jacksonville, FL, 2005), M401Google Scholar
  3. 3.
    M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y.I. Jin, A. Ben-Yakar, Nature, 432, 822 (2004)CrossRefADSGoogle Scholar
  4. 4.
    N. Barsch, K. Korber, A. Ostendorf, K.H. Tonshoff, Appl. Phys. A 77, 237 (2003)ADSGoogle Scholar
  5. 5.
    Y. Nakata, T. Okada, M. Maeda, Appl. Phys. Lett. 81, 4239 (2002)CrossRefADSGoogle Scholar
  6. 6.
    P. Rudolph, J. Bonse, J. Kruger, W. Kautek, Appl. Phys. A 69, 763 (1999)CrossRefADSGoogle Scholar
  7. 7.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)CrossRefADSGoogle Scholar
  8. 8.
    T. Gorelik, M. Will, S. Nolte, A. Tünnermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)CrossRefADSGoogle Scholar
  9. 9.
    W. Watanabe, T. Asano, K. Yamada, K. Itoh, J. Nishii, Opt. Lett. 28, 2491 (2003)CrossRefADSGoogle Scholar
  10. 10.
    L. Sudrie, K.A. Winick, J. Lightwave Technol. 21, 246 (2003)CrossRefADSGoogle Scholar
  11. 11.
    E. Bricchi, J.D. Mills, P.G. Kazamsky, B.G. Klappauf, J.J. Baumberg, Opt. Lett. 27, 2200 (2002)CrossRefADSGoogle Scholar
  12. 12.
    G.D. Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, P. Laporta, Opt. Exp. 84, 3190 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, Opt. Lett. 26, 277 (2001)CrossRefADSGoogle Scholar
  14. 14.
    K. Sugioka, Y. Cheng, K. Midorikawa, Appl. Phys. A 81, 1 (2005)CrossRefADSGoogle Scholar
  15. 15.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)CrossRefADSGoogle Scholar
  16. 16.
    S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, B. Luther-Davies, Appl. Phys. Lett. 88, 201909 (2006)CrossRefADSGoogle Scholar
  17. 17.
    K. Ke, E.F. Hasselbrink, A.J. Hunt, Anal. Chem. 77, 5083 (2005)CrossRefGoogle Scholar
  18. 18.
    S.I. Anisimov, B. Rethfeld, Proc. SPIE 3093 (1997)Google Scholar
  19. 19.
    P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61, 2886 (1988)CrossRefADSGoogle Scholar
  20. 20.
    M. Fujita, M. Hashida, Oyo Butsuri 73, 178 (2004) (in Japanese)Google Scholar
  21. 21.
    S. Maruo, H. Inoue, Appl. Phys. Lett. 89, 144101 (2006)CrossRefADSGoogle Scholar
  22. 22.
    S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, H. Misawa, Nanotechnology 16, 846 (2005)CrossRefADSGoogle Scholar
  23. 23.
    J.W. Chan, T.R. Huser, S. Risbun, D.M. Krol, Opt. Lett. 26, 1726 (2001)CrossRefADSGoogle Scholar
  24. 24.
    M. Will, S. Nolte, B.N. Chichkov, A. Tuennermann, Appl. Opt. 41, 4360 (2002)CrossRefADSGoogle Scholar
  25. 25.
    S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Appl. Phys. A 77, 109 (2003)CrossRefADSGoogle Scholar
  26. 26.
    K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 42, 6916 (2003)CrossRefADSGoogle Scholar
  27. 27.
    K. Kawamura, M. Hirano, T. Kamiya, H. Hosono, Appl. Phys. Lett. 81, 1137 (2002)CrossRefADSGoogle Scholar
  28. 28.
    K. Yamada, W. Watanabe, Y. Li, K. Itoh, Opt. Lett. 29, 1846 (2004)CrossRefADSGoogle Scholar
  29. 29.
    K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, H. Hosono, Appl. Phys. Lett. 84, 311 (2004)CrossRefADSGoogle Scholar
  30. 30.
    A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 277 (2001)CrossRefADSGoogle Scholar
  31. 31.
    Y. Hanada, K. Sugioka, H. Kawano, I.S. Ishikawa, A. Miyawaki, K. Midorikawa, Biomed. Microdevices 10, 403 (2008)CrossRefGoogle Scholar
  32. 32.
    R. Osellame, V. Maselli, R.M. Vazquez, R. Ramponi, G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Z. Wang, K. Sugioka, K. Midorikawa, Appl. Phys. A 93, 225 (2008)CrossRefADSGoogle Scholar
  34. 34.
    K. Hirao, Oyo Butsuri 67, 950 (21998) (in Japanese)Google Scholar
  35. 35.
    E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur, Opt. Lett. 21, 2023 (1996)CrossRefADSGoogle Scholar
  36. 36.
    H.B. Sun, Y. Xu, S. JuodKazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 325 (2001)CrossRefADSGoogle Scholar
  37. 37.
    J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197–198, 891 (2002)CrossRefGoogle Scholar
  38. 38.
    Y. Shomotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.RIKEN – The Institute of Physical and Chemical ResearchWakoJapan

Personalised recommendations